Skip to main content

Creating figures and animations for multi-channel images with a focus on microscopy.

Project description

Binder build PyPI - License PyPI - Python Version PyPI PyPI - Status

microfilm

This package is a collection of tools to display and analyze 2D and 2D time-lapse microscopy images. In particular it makes it straightforward to create figures containing multi-channel images represented in a composite color mode as done in the popular image processing software Fiji. It also allows to easily complete such figures with standard annotations like labels and scale bars. In case of time-lapse data, the figures are turned into animations which can be interactively browsed from a Jupyter notebook, saved in standard movie formats (mp4, gif etc.) and completed with time counters. Finally, figures and animations can easily be combined into larger panels. These main functionalities are provided by the microfilm.microplot and microfilm.microanim modules.

Following the model of seaborn, microfilm is entirely based on Matplotlib and tries to provide good defaults to produce good microcopy figures out-of-the-box. It however also offers complete access to the Matplotlib structures like axis and figures underlying the microfilm objects, allowing thus for the creation of arbitrarily complex plots.

Installation

You can install this package directly from Github using:

pip install microfilm

To test the package via the Jupyter interface and the notebooks available here you can create a conda environment using the environment.yml file:

conda env create -f environment.yml

Simple plot

It is straightforward to create a ready-to-use plot of a multi-channel image dataset. In the following code snippet, we load a Numpy array of a multi-channel time-lapse dataset with shape CTXY (three channels). The figure below showing the time-point t=10 is generated in a single command with a few options and saved as a png:

import numpy as np
import skimage.io
from microfilm.microplot import microshow

image = skimage.io.imread('../demodata/coli_nucl_ori_ter.tif')
time = 10

microim = microshow(images=image[:, time, :, :], fig_scaling=5,
                 cmaps=['pure_blue','pure_red', 'pure_green'],
                 unit='um', scalebar_size_in_units=3, scalebar_unit_per_pix=0.065, scalebar_text_centered=True, scalebar_font_size=0.04,label_text='A', label_font_size=0.04)

microim.savefig('../illustrations/composite.png', bbox_inches = 'tight', pad_inches = 0, dpi=600)
image

Animation

It is then easy to extend a simple figure into an animation as both objects take the same options. Additionally, a time-stamp can be added to the animation. This code generates the movie visible below:

import numpy as np
import skimage.io
from microfilm.microanim import Microanim

image = skimage.io.imread('../demodata/coli_nucl_ori_ter.tif')

microanim = Microanim(data=image, cmaps=['pure_blue','pure_red', 'pure_green'], fig_scaling=5,
                      unit='um', scalebar_size_in_units=3, scalebar_unit_per_pix=0.065,
                      scalebar_font_size=0.04)

microanim.add_label('A', label_font_size=30)
microanim.add_time_stamp('T', 10, location='lower left', timestamp_size=20)

microanim.save_movie('../illustrations/composite_movie.gif', fps=15)
image

Panels

Both simple figures and animations can be combined into larger panels via the microplot.Micropanel and microanim.Microanimpanel objects. For example we can first create two figures microim1 and microim2 and then combine them into micropanel:

from microfilm import microplot
import skimage.io

image = skimage.io.imread('../demodata/coli_nucl_ori_ter.tif')

microim1 = microplot.microshow(images=[image[0, 10, :, :], image[1, 10, :, :]],
                               cmaps=['gray', 'pure_magenta'], flip_map=[True, False],
                               label_text='A', label_color='black')
microim2 = microplot.microshow(images=[image[0, 10, :, :], image[2, 10, :, :]],
                               cmaps=['gray', 'pure_cyan'], flip_map=[True, False],
                               label_text='B', label_color='black')

micropanel = microplot.Micropanel(rows=1, cols=2, figsize=[4,3])

micropanel.add_element(pos=[0,0], microim=microim1)
micropanel.add_element(pos=[0,1], microim=microim2)

micropanel.savefig('../illustrations/panel.png', bbox_inches = 'tight', pad_inches = 0, dpi=600)
image

And similarly for animations:

from microfilm import microanim
import skimage.io

image = skimage.io.imread('../demodata/coli_nucl_ori_ter.tif')

microanim1 = microanim.Microanim(data=image[[0,1],::], cmaps=['gray', 'pure_magenta'],
                                 flip_map=[True, False], label_text='A', label_color='black')
microanim2 = microanim.Microanim(data=image[[0,2],::], cmaps=['gray', 'pure_cyan'],
                                 flip_map=[True, False], label_text='B', label_color='black')

microanim1.add_time_stamp(unit='T', unit_per_frame='3', location='lower-right', timestamp_color='black')

animpanel = microanim.Microanimpanel(rows=1, cols=2, figsize=[4,3])
animpanel.add_element(pos=[0,0], microanim=microanim1)
animpanel.add_element(pos=[0,1], microanim=microanim2)

animpanel.save_movie('../illustrations/panel.gif')
image

Additional functionalities

In addition to these main plotting capabilities, the packages also offers:

  • microfilm.colorify: a series of utility functions used by the main functions to create the composite color images. It contains functions to create colormaps, to turn 2D arrays into 3D-RGB arrays with appropriate colormaps etc.
  • microfilm.dataset: a module offering a simple common data structure to handle multi-channel time-lapse data from multipage tiffs, series of tiff files, Nikon ND2 files, H5 and Numpy arrays. Requirement to use this module are at the moment very constrained (e.g. dimension order of Numpy arrays, name of H5 content etc.) but might evolve in the future.

Authors

This package has been created by Guillaume Witz, Microscopy Imaging Center and Science IT Support, University of Bern.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

microfilm-0.0.8.tar.gz (72.6 MB view details)

Uploaded Source

Built Distribution

microfilm-0.0.8-py3-none-any.whl (21.6 kB view details)

Uploaded Python 3

File details

Details for the file microfilm-0.0.8.tar.gz.

File metadata

  • Download URL: microfilm-0.0.8.tar.gz
  • Upload date:
  • Size: 72.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for microfilm-0.0.8.tar.gz
Algorithm Hash digest
SHA256 3b27b909f48806e3ae7ba7cb19a0d5cce85e3103fcf9396f068094d1aea295a8
MD5 6a52c64bf3803ed53fd292f06701ee1e
BLAKE2b-256 32f9f68ba8a7ea2603196b3bd1d8834ee26744033867e14993e15f3f122399ca

See more details on using hashes here.

File details

Details for the file microfilm-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: microfilm-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 21.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for microfilm-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 007ed6ad15c0d4475f830f356a4baff226954e155e1dc6725018e81904e5acba
MD5 0dbe1c08cf641332db14848bf4c32e1a
BLAKE2b-256 3b95bb2a257b6abcff7746403b2a87a94279c12335d866991d3205c0dd0fd277

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page