Skip to main content

A package that uses the DHI dfs libraries to create, write and read dfs and mesh files.

Project description

logo

MIKE IO: input/output of MIKE files in python

Python version Python package PyPI version

https://dhi.github.io/mikeio/

Read, write and manipulate dfs0, dfs1, dfs2, dfs3, dfsu and mesh files.

Facilitates common data processing workflows for MIKE files.

For res1d and xns11 files use the related package MIKE IO 1D

Blue cafe

Requirements

  • Windows or Linux operating system
  • Python x64 3.7 - 3.10
  • (Windows) VC++ redistributables (already installed if you have MIKE)

More info about dependencies

Where can I get help?

Installation

From PyPI:

pip install mikeio

Or development version:

pip install https://github.com/DHI/mikeio/archive/main.zip

Examples

Reading data from dfs0, dfs1, dfs2, dfsu

Generic read method to read values, if you need additional features such as coordinates, use specialised classes instead e.g. Dfsu

>>> import mikeio
>>> ds = mikeio.read("random.dfs0")
>>> ds
<mikeio.Dataset>
Dimensions: (1000,)
Time: 2017-01-01 00:00:00 - 2017-07-28 03:00:00
Items:
  0:  VarFun01 <Water Level> (meter)
  1:  NotFun <Water Level> (meter)
>>> ds = mikeio.read("random.dfs1")
>>> ds
<mikeio.Dataset>
Dimensions: (100, 3)
Time: 2012-01-01 00:00:00 - 2012-01-01 00:19:48
Items:
  0:  testing water level <Water Level> (meter)

Reading dfs0 file into Pandas DataFrame

>>>  from mikeio import Dfs0
>>>  dfs = Dfs0('simple.dfs0')
>>>  ts = dfs.to_dataframe()

Write simple timeseries

>>>  from datetime import datetime
>>>  import numpy as np
>>>  from mikeio import Dfs0
>>>  data = [np.random.random([100])]
>>>  dfs = Dfs0()
>>>  dfs.write('simple.dfs0', data, start_time=datetime(2017, 1, 1), dt=60)

Write timeseries from dataframe

import pandas as pd
import mikeio
>>> df = pd.read_csv(
...         "tests/testdata/co2-mm-mlo.csv",
...         parse_dates=True,
...         index_col="Date",
...         na_values=-99.99,
...     )
>>> df.to_dfs0("mauna_loa.dfs0")

For more examples on timeseries data see this notebook

Read dfs2 data

>>>  from mikeio import Dfs2
>>> dfs = Dfs2("random.dfs2")
>>> ds = dfs.read()
>>> ds
<mikeio.Dataset>
Dimensions: (3, 100, 2)
Time: 2012-01-01 00:00:00 - 2012-01-01 00:00:24
Items:
  0:  testing water level <Water Level> (meter)

Create dfs2

For a complete example of conversion from netcdf to dfs2 see this notebook.

Another example of downloading meteorological forecast from the Global Forecasting System and converting it to a dfs2 ready to be used by a MIKE 21 model.

Read dfsu files

>>>  import matplotlib.pyplot as plt
>>>  from mikeio import Dfsu
>>>  dfs = Dfsu("HD.dfsu")
>>>  ds = dfs.read()
>>>  idx = dfs.find_nearest_element(x=608000, y=6907000)
>>>  plt.plot(ds.time, ds.data[0][:,idx])

Timeseries

>>>  from mikeio import Mesh
>>>  msh = Mesh("FakeLake.dfsu")
>>>  msh.plot()

Mesh

For more examples on working with dfsu and mesh see these notebooks:

Pfs

Pfs is the format used for MIKE setup files (.m21fm, .m3fm, .sw etc.).

There is experimental support for reading pfs files, but the API is likely to change.

pfs

Items, units

Useful when creating a new dfs file

>>> from mikeio.eum import EUMType, EUMUnit
>>> EUMType.Temperature
<EUMType.Temperature: 100006>
>>> EUMType.Temperature.units
[degree Celsius, degree Fahrenheit, degree Kelvin]
>>> EUMUnit.degree_Kelvin
degree Kelvin

Tested

MIKE IO is tested extensively. 95% total test coverage.

See detailed test coverage report below:

File                           Covered  Missed  %
-------------------------------------------------
mikeio\__init__.py               40      1    98%
mikeio\aggregator.py            103      9    91%
mikeio\bin\__init__.py            0      0   100%
mikeio\custom_exceptions.py      19      1    95%
mikeio\dataset.py               272      3    99%
mikeio\dfs.py                   206      7    97%
mikeio\dfs0.py                  239     15    94%
mikeio\dfs1.py                   48      2    96%
mikeio\dfs2.py                  100      2    98%
mikeio\dfs3.py                  201     79    61%
mikeio\dfsu.py                 1337     57    96%
mikeio\dfsutil.py                76      4    95%
mikeio\dotnet.py                 63      4    94%
mikeio\eum.py                  1230      3    99%
mikeio\generic.py               228      2    99%
mikeio\helpers.py                13      0   100%
mikeio\interpolation.py          54      1    98%
mikeio\spatial.py               279      4    99%
mikeio\xyz.py                    12      0   100%
-------------------------------------------------
TOTAL                          5082    229    95%

=================== 335 passed ==================

Cloud enabled

From MIKE IO v.0.7 it is now possible to run MIKE IO on Linux-based Cloud computing, e.g. Google Colab.

Colab

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mikeio-0.12.0.tar.gz (102.2 kB view details)

Uploaded Source

File details

Details for the file mikeio-0.12.0.tar.gz.

File metadata

  • Download URL: mikeio-0.12.0.tar.gz
  • Upload date:
  • Size: 102.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.9

File hashes

Hashes for mikeio-0.12.0.tar.gz
Algorithm Hash digest
SHA256 f299baa2b277e5f2ef1c46871870f78b1b0a47aa3159edf9acbb8a0c66b6bdeb
MD5 45f84ae21ee671d1dcd3419828bed1fb
BLAKE2b-256 a7ab66278f0da0c7e0c03bc9a811edd8e6139ddbab6a33289985bd9812aed660

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page