Skip to main content

A package that uses the DHI dfs libraries to create, write and read dfs and mesh files.

Project description

logo

MIKE IO: input/output of MIKE files in Python

Python version Full test PyPI version OS

[!NOTE]

Instructor-led course

Getting started with MIKE IO for Python processing of dfs files

From 4th September 2024 to 2nd October 2024

Read, write and manipulate dfs0, dfs1, dfs2, dfs3, dfsu and mesh files.

MIKE IO facilitates common data processing workflows for MIKE files in Python.

MIKEIO. Read, write and analyze MIKE dfs files with Python on Vimeo

Requirements

  • Windows or Linux operating system
  • Python x64 3.9 - 3.12
  • (Windows) VC++ redistributables (already installed if you have MIKE)

More info about dependencies

Installation

From PyPI:

pip install mikeio

Or development version:

pip install https://github.com/DHI/mikeio/archive/main.zip

:warning: Don't use conda to install MIKE IO!, the version on conda is outdated.

Getting started

The material from the last Academy by DHI course is available here: Getting started with Dfs files in Python using MIKE IO

Where can I get help?

Tested

MIKE IO is tested extensively.

See detailed test coverage report below:

---------- coverage: platform linux, python 3.12.4-final-0 -----------
Name                                      Stmts   Miss  Cover
-------------------------------------------------------------
mikeio/__init__.py                           31      3    90%
mikeio/_interpolation.py                     68      6    91%
mikeio/_spectral.py                          97      7    93%
mikeio/_time.py                              29      1    97%
mikeio/_track.py                            103     14    86%
mikeio/dataset/__init__.py                    3      0   100%
mikeio/dataset/_data_plot.py                358     38    89%
mikeio/dataset/_data_utils.py                20      0   100%
mikeio/dataset/_dataarray.py                730     52    93%
mikeio/dataset/_dataset.py                  734     57    92%
mikeio/dfs/__init__.py                        5      0   100%
mikeio/dfs/_dfs0.py                         198     13    93%
mikeio/dfs/_dfs1.py                          58      2    97%
mikeio/dfs/_dfs2.py                         132      3    98%
mikeio/dfs/_dfs3.py                         147      9    94%
mikeio/dfs/_dfs.py                          290     18    94%
mikeio/dfsu/__init__.py                       6      0   100%
mikeio/dfsu/_common.py                       36      1    97%
mikeio/dfsu/_dfsu.py                        223      7    97%
mikeio/dfsu/_factory.py                      20      1    95%
mikeio/dfsu/_layered.py                     190      7    96%
mikeio/dfsu/_mesh.py                         54      8    85%
mikeio/dfsu/_spectral.py                    214     36    83%
mikeio/eum/__init__.py                        2      0   100%
mikeio/eum/_eum.py                         1334      9    99%
mikeio/exceptions.py                         24      4    83%
mikeio/generic.py                           451     17    96%
mikeio/pfs/__init__.py                        8      0   100%
mikeio/pfs/_pfsdocument.py                  248     13    95%
mikeio/pfs/_pfssection.py                   223      9    96%
mikeio/spatial/_FM_geometry.py              521     24    95%
mikeio/spatial/_FM_geometry_layered.py      415     30    93%
mikeio/spatial/_FM_geometry_spectral.py      94      9    90%
mikeio/spatial/_FM_utils.py                 275     22    92%
mikeio/spatial/__init__.py                    6      0   100%
mikeio/spatial/_geometry.py                  78      8    90%
mikeio/spatial/_grid_geometry.py            639     45    93%
mikeio/spatial/_utils.py                     39      0   100%
mikeio/spatial/crs.py                        51      5    90%
mikeio/xyz.py                                14      0   100%
-------------------------------------------------------------
TOTAL                                      8168    478    94%

Cloud enabled

It is possible to run MIKE IO in your favorite cloud notebook environment e.g. Deepnote, Google Colab, etc...

DeepNote

Colab

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mikeio-2.0.1.tar.gz (7.8 MB view details)

Uploaded Source

Built Distribution

mikeio-2.0.1-py3-none-any.whl (150.7 kB view details)

Uploaded Python 3

File details

Details for the file mikeio-2.0.1.tar.gz.

File metadata

  • Download URL: mikeio-2.0.1.tar.gz
  • Upload date:
  • Size: 7.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mikeio-2.0.1.tar.gz
Algorithm Hash digest
SHA256 2b773ee6b5fa1b7791ee1c9f49090d1a751688ce0693609b2eb9f1006fe4dfed
MD5 af692a5488df231521f477e55e1d064b
BLAKE2b-256 0e3573bb126bd54da716cc6dc99ef82671b84951d5fcf3aae3eefc9f29d02343

See more details on using hashes here.

File details

Details for the file mikeio-2.0.1-py3-none-any.whl.

File metadata

  • Download URL: mikeio-2.0.1-py3-none-any.whl
  • Upload date:
  • Size: 150.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for mikeio-2.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 76b70f89924f37a753b0c5e83a987ab631dba388be29ecf2acda22a07cc6ab0e
MD5 6ef958e985f5aeac60460cebe3b74828
BLAKE2b-256 a6ede8221659adeb28cf37c083e6b84047b7e45d7989f0289c5237e937b93cd4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page