Parameter-Efficient Tuning
Project description
MindPet微调算法用户文档
一、MindPet简介
MindPet(Pet:Parameter-Efficient Tuning)是属于Mindspore领域的微调算法套件。随着计算算力不断增加,大模型无限的潜力也被挖掘出来。但随之在应用和训练上带来了巨大的花销,导致商业落地困难。因此,出现一种新的参数高效(parameter-efficient)算法,与标准的全参数微调相比,这些算法仅需要微调小部分参数,可以大大降低计算和存储成本,同时可媲美全参微调的性能。
二、环境准备
2.1 环境依赖
- Python 3.7至3.9版本
- MindSpore >= 1.8
2.2 软件安装
在代码仓根目录下运行以下命令,会生成dist文件夹以及whl包:
python set_up.py bdist_wheel
执行以下命令安装whl包:
pip install dist/mindpet-1.0.0-py3-none-any.whl
2.3 软件卸载
通过以下命令进行卸载:
pip uninstall mindpet
三、微调算法API
目前MindPet已提供以下五种经典低参微调算法以及一种提升精度的微调算法的API接口,用户可快速适配原始大模型,提升下游任务微调性能和精度;
微调算法 | 算法论文 | 使用说明 |
---|---|---|
LoRA | LoRA: Low-Rank Adaptation of Large Language Models | TK_DeltaAlgorithm_README 第一章 |
PrefixTuning | Prefix-Tuning: Optimizing Continuous Prompts for Generation | TK_DeltaAlgorithm_README 第二章 |
Adapter | Parameter-Efficient Transfer Learning for NLP | TK_DeltaAlgorithm_README 第三章 |
LowRankAdapter | Compacter: Efficient low-rank hypercom plex adapter layers | TK_DeltaAlgorithm_README 第四章 |
BitFit | BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models | TK_DeltaAlgorithm_README 第五章 |
R_Drop | R-Drop: Regularized Dropout for Neural Networks | TK_DeltaAlgorithm_README 第六章 |
四、共性图操作API
4.1 冻结指定模块功能API
MindPet支持用户根据 微调算法 或 模块名 冻结网络中部分模块,提供调用接口和配置文件两种实现方式。
使用说明参考TK_GraphOperation_README 第一章。
4.2 保存可训练参数功能API
MindPet支持用户单独保存训练中可更新的参数为ckpt文件,从而节省存储所用的物理资源。
使用说明参考TK_GraphOperation_README 第二章。
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mindpet-1.0.0.tar.gz
(44.0 kB
view details)
Built Distribution
mindpet-1.0.0-py3-none-any.whl
(68.9 kB
view details)
File details
Details for the file mindpet-1.0.0.tar.gz
.
File metadata
- Download URL: mindpet-1.0.0.tar.gz
- Upload date:
- Size: 44.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a6bb68d139eba7bb0649c759ee23410aaa0b8d6b7f6264ff70e8a06a99cb771 |
|
MD5 | 1e3542a8b9ac2b92ee91557648363eb3 |
|
BLAKE2b-256 | 97790be69ada72d01c68c2a5f9f85b54bf6d5163982c95bda27e4bd550d1583f |
File details
Details for the file mindpet-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: mindpet-1.0.0-py3-none-any.whl
- Upload date:
- Size: 68.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2ddd6a58d584a0685b6b5bd043f8b94043004ff5d84e7b4209e4185b9e4e3713 |
|
MD5 | 5d2864a0ce406ceb7d875949794a273e |
|
BLAKE2b-256 | f18b624c0625d3d2488f859486b9adaa0d5c8d7910b608401f17a0a28d1a6ac7 |