Skip to main content

A tool for processing and analyzing digital pathology images stored in DICOM format.

Project description

MiniPath README

Overview

MiniPath is a Python-based tool designed for processing and analyzing digital pathology images stored in DICOM format, particularly from whole slide images (WSIs). The primary focus of MiniPath is to extract and rank diverse image patches based on entropy and cluster analysis. The tool leverages several machine learning techniques, including Principal Component Analysis (PCA) and KMeans clustering, to identify representative patches that can be used for further analysis at higher magnification levels.

MiniPath includes various utilities for reading DICOM files from local storage or Google Cloud Storage (GCS), calculating image entropy, and selecting representative patches for downstream processing.

Key Features

  • DICOM Image Handling: Supports reading DICOM images from local paths, GCS, and DICOMweb.
  • Entropy Calculation: Uses entropy as a feature for image patch diversity ranking.
  • PCA and Clustering: Applies PCA to reduce feature dimensionality and KMeans clustering to group similar patches.
  • Patch Ranking: Ranks patches for diversity and selects representative patches.
  • High-Resolution Image Extraction: Extracts relevant high-magnification frames corresponding to selected low-magnification patches.

Installation

To install the necessary dependencies, you can use the provided requirements.txt file:

pip install -r requirements.txt

Environment Setup

This tool relies on environment variables to connect to Google Cloud services. Ensure that you have a .env file in the root directory with the following contents:

GOOGLE_APPLICATION_CREDENTIALS=path/to/your/credentials.json

Replace path/to/your/credentials.json with the actual path to your Google Cloud credentials file.

Usage

Initialization

from minipath import MiniPath
minipath = MiniPath(csv='path/to/csv_file.csv', subset=True)
  • csv: Path to a CSV file containing metadata and GCS URLs for high-magnification DICOM images. Requires the following columns:

    • gcs_url: path to local ('path/to/file') or remote ('gs://') DICOM file or DICOMweb address ('https://')
    • SeriesInstanceUID: Necessary to link together different resolutions of DICOM images
    • row_num_asc: should have a 1 in this column if referring to the low magnification DICOM
    • row_num_desc: should have a 1 in this column if referring to the high magnification DICOM
  • subset: Boolean flag to decide if only a subset of diverse patches should be used. Defaults to True. If you set it to false, all patches will be extracted.

Get Representative Patches

minipath.get_representatives(full_url='https://path.to.dicom.web/resource')
  • full_url: The URL pointing to the low-magnification DICOM image. This method extracts image patches from the provided DICOM file, computes entropy for each patch, applies PCA, and clusters the patches to select the most representative ones.

Extract High-Resolution Frames

high_res_frames = minipath.get_high_res()
  • high_res_patches will be an array of dictionaries with the following keys:
    • 'row_min': Pixel coordinate of first row
    • 'row_max': Pixel coordinate of last row
    • 'col_min': Pixel coordinate of first col
    • 'col_max': Pixel coordinate of last col
    • 'frame': The dicom frame that represents this coordinate set
    • 'img_array': a numpy array of the image values

This method extracts high-resolution frames corresponding to the representative patches identified at low magnification. You can loop through this array for running a model.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

minipath-0.1.8.tar.gz (9.3 kB view details)

Uploaded Source

Built Distribution

minipath-0.1.8-py3-none-any.whl (9.2 kB view details)

Uploaded Python 3

File details

Details for the file minipath-0.1.8.tar.gz.

File metadata

  • Download URL: minipath-0.1.8.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for minipath-0.1.8.tar.gz
Algorithm Hash digest
SHA256 8c25c12b19995fff41c8bb9eb2f3674ada6064b0c1bc679611da14f258b501b2
MD5 201770f577462cc103f5fcdddb8dc8ab
BLAKE2b-256 61c69f8f2a252446d5e5cd619e38a4231f4ef0955a69f1a9223e7b823b88f2be

See more details on using hashes here.

File details

Details for the file minipath-0.1.8-py3-none-any.whl.

File metadata

  • Download URL: minipath-0.1.8-py3-none-any.whl
  • Upload date:
  • Size: 9.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for minipath-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 6df92fad099c3ed6e8ebb989df1a2eb26c6611f3afc083b6f6a1361bb0f1bc99
MD5 1ee0adf9971cb0a6a66f9e233be6d427
BLAKE2b-256 bf4f95b16a03d29e2ece297edb9757c79b4b9e6d6c2a78572c21db1119eece92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page