Skip to main content

A library to convert MiniSom models to ONNX format

Project description

minisom-onnx

minisom2onnx is a Python library for converting MiniSom models to ONNX (Open Neural Network Exchange) format, allowing for deployment in various environments. It provides flexibility to include additional information, such as quantization error thresholds and label mappings.

Features

  • Convert MiniSom models to ONNX format
  • Support for different distance functions
  • Optional quantization error thresholding (outlier detection)
  • Optional label mapping (classification)

Installation

You can install the library using pip:

pip install minisom2onnx

API

The to_onnx function converts a trained MiniSom model to an ONNX format.

Function Signature

to_onnx(
    model, 
    name: Optional[str] = None,
    description: Optional[str] = None,
    threshold: Optional[float] = None,
    labels: Optional[np.ndarray] = None,
    outputs: Optional[List[str]] = ['winner'],
    properties: Optional[Dict[str, str]] = {},
    opset: Optional[int] = 18,
) -> ModelProto

Parameters

  • model: The trained MiniSom model to be converted.
  • name: (Optional) A string specifying the name of the ONNX model. If not provided, a random uuid will be used.
  • description: (Optional) A textual description of the ONNX model's graph.
  • threshold: (Optional) A float value representing the threshold for quantization error. If provided, an additional node indicating whether the quantization error exceeds this threshold will be included in the ONNX model.
  • labels: (Optional) A 2D numpy array containing labels corresponding to the SOM grid. If provided, an additional node mapping the best matching unit (BMU) to a label will be included.
  • outputs: (Optional) A list of strings specifying the desired output names to include in the final model. The default value is ['winner'].
  • properties: (Optional) A dictionary of additional properties to include in the model's metadata.
  • opset: (Optional) An integer specifying the ONNX opset version to use. The default value is 18.

Outputs

By default, the following outputs are available:

  • distance: The distance between each input sample and the weights vector of the winning neuron.
  • quantization: The code book BMU (weights vector of the winning neuron) for each sample in the data.
  • quantization_error: The quantization error, calculated as the distance between each input sample and its best matching unit.
  • winner: The coordinates of the BMU on the SOM grid.

Additional outputs are available based on the optional parameters:

  • outlier: A binary indicator of whether the quantization error exceeds the provided threshold. This output is only available if the threshold parameter is specified.
  • class: The label of the BMU. This output is only available if the labels parameter is provided.

Usage

Here’s a basic example of how to use minisom2onnx to convert a trained MiniSom model to ONNX format:

from minisom import MiniSom
import numpy as np
import random
from minisom2onnx import to_onnx

data = np.random.rand(100, 4)

# Create and train a MiniSom model
som = MiniSom(10, 10, data.shape[1], sigma=0.3, learning_rate=0.5)
som.random_weights_init(data)
som.train_random(data, 100)

# Convert the model to ONNX
onnx_model = to_onnx(som, name="SOMModel")

# Save the model
import onnx
onnx.save(onnx_model, 'som_model.onnx')

Using Labels

To include label information in your ONNX model, you can provide labels during conversion. Here’s an example:

from minisom import MiniSom
import numpy as np
import random
from minisom2onnx import to_onnx

dim = 10
data = np.random.rand(100, 4)
target = [random.randint(1, 2) for i in range(100)]

# Create and train a MiniSom model
som = MiniSom(dim, dim, data.shape[1], sigma=3, learning_rate=0.5, neighborhood_function='triangle', random_seed=10)
som.pca_weights_init(data)
som.train(data, 1000, random_order=True, use_epochs=True)

default_label = 0
labels = np.full((dim, dim), fill_value=default_label, dtype=int)
for position, counter in som.labels_map(data, target).items():
    labels[position] = max(counter, key=counter.get)

# Convert the model to ONNX
onnx_model = to_onnx(som, name="SOMClassifier", labels=labels, outputs=["class"])

# Save the model
import onnx
onnx.save(onnx_model, 'som_model.onnx')

Using Thresholding

If you want to include threshold-based outlier detection in your ONNX model, you can specify a threshold. Here’s how:

from minisom import MiniSom
import numpy as np
import random
from minisom2onnx import to_onnx

dim = 10
data = np.random.rand(100, 4)

# Create and train a MiniSom model
som = MiniSom(dim, dim, data.shape[1], sigma=3, learning_rate=0.5, neighborhood_function='triangle', random_seed=10)
som.train(data, 1000, random_order=True, use_epochs=True)

quantization_errors = np.array([som.quantization_error([x]) for x in data])
threshold = np.percentile(quantization_errors, 95)

# Convert the model to ONNX
onnx_model = to_onnx(som, name="SOMOutlier", threshold=threshold, outputs=["outlier"])

# Save the model
import onnx
onnx.save(onnx_model, 'som_model.onnx')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

minisom2onnx-0.1.0rc1.tar.gz (7.4 kB view hashes)

Uploaded Source

Built Distribution

minisom2onnx-0.1.0rc1-py3-none-any.whl (7.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page