Core modules necessary during application development
Project description
MLE Core
Overview
Welcome to the MLE Core repository, maintained by the ML Experts team. This repository contains core modules and utilities necessary for application development. It includes connectors for databases and language model services, a chat service for interacting with LLMs, and various utility functions to aid in development.
Directory Structure
mle_core/
├── __init__.py
├── chat/
│ ├── __init__.py
│ └── chat_service.py
├── connectors/
│ ├── __init__.py
│ ├── base.py
│ ├── db/
│ │ ├── __init__.py
│ │ ├── postgres_connector.py
│ │ └── mongo_connector.py
│ └── llm/
│ ├── __init__.py
│ ├── base.py
│ ├── openai_connector.py
│ └── azure_connector.py
├── utils/
│ ├── __init__.py
│ ├── formatting.py
│ ├── logging.py
│ └── response_handling.py
├── config.py
└── main.py
Modules
Chat
The chat
module provides a ChatService
class that simplifies interaction with different language model (LLM) connectors.
chat_service.py
: Contains theChatService
class for interacting with LLMs.
Connectors
The connectors
module includes connectors for various databases and LLMs.
base.py
: Defines the abstract base class for connectors.db/
: Contains database connectors.postgres_connector.py
: Connector for PostgreSQL.mongo_connector.py
: Connector for MongoDB.
llm/
: Contains LLM connectors.openai_connector.py
: Connector for OpenAI API.azure_connector.py
: Connector for Azure AI API.
Utils
The utils
module contains utility functions that are commonly used across different modules.
formatting.py
: Functions for formatting prompts.logging.py
: Functions for setting up logging.response_handling.py
: Functions for handling LLM responses.
Config
The config.py
file contains configuration logic to select the appropriate connectors based on the environment or other criteria.
Installing the Repository
First, install the prowritingaid-sdk
dependency for grammar checker.
pip install git+https://github.com/prowriting/prowritingaid.python.git
Then, install our package
pip install mle_core
Usage
Setting Up Environment Variables
Ensure you have the following environment variables set for database and LLM connectors:
For PostgreSQL:
DATABASE_USER=your_db_user
DATABASE_PASSWORD=your_db_password
DATABASE_HOST=your_db_host
DATABASE_PORT=your_db_port
DATABASE_NAME=your_db_name
For MongoDB:
MONGO_URI=your_mongo_uri
MONGO_DB_NAME=your_mongo_db_name
For OpenAI:
OPENAI_API_KEY=your_openai_api_key
For ChatAnthropic:
ANTHROPIC_API_KEY=your_anthropic_api_key
For Azure AI:
AZURE_ENDPOINT=your_azure_endpoint
AZURE_API_KEY=your_azure_api_key
AZURE_DEPLOYMENT_NAME=your_azure_deployment_name
Using the Chat Service
from mle_core.chat import ChatService
import asyncio
from dotenv import load_dotenv
from mle_core.chat.chat_service import ChatService
load_dotenv()
async def main():
llm_type='openai' # or "azure" or "anthropic"
chat_service = ChatService(llm_type)
method = 'sync' # or async
response_method = 'invoke' # or "batch" or "stream"
system_message = 'You are a helpful assistant.'
user_message = 'What is the weather like today?'
model_name = "gpt-3.5-turbo"
input = {
"system_message": system_message,
"user_message": user_message
}
if method == "sync":
response = chat_service.get_sync_response(
response_method,
input,
model_name=model_name,
temperature=0.2,
max_tokens=1000,
is_structured=False,
pydantic_model=None)
print(response)
elif method == "async":
response = await chat_service.get_async_response(
response_method,
input,
model_name=model_name,
temperature=0.2,
max_tokens=1000,
is_structured=False,
pydantic_model=None)
print(response)
asyncio.run(main())
Using the Chat Service for structured output
from mle_core.chat import ChatService
import asyncio
from dotenv import load_dotenv
from mle_core.chat.chat_service import ChatService
from langchain_core.pydantic_v1 import BaseModel, Field
load_dotenv()
#create a pydnatic model
class Joke(BaseModel):
setup: str = Field(description="setup of the joke")
punchline: str = Field(description="punchline of the joke")
async def main():
llm_type='openai' # or "azure" or "anthropic"
chat_service = ChatService(llm_type)
method = 'sync' # or async
response_method = 'invoke' # or "batch" or "stream"
system_message = 'You are a helpful assistant.'
user_message = 'What is the weather like today?'
model_name = "gpt-3.5-turbo"
input = {
"system_message": system_message,
"user_message": user_message
}
if method == "sync":
response = chat_service.get_sync_response(
response_method,
input,
model_name=model_name,
temperature=0.2,
max_tokens=1000,
is_structured=True,
pydantic_model=Joke)
print(response)
elif method == "async":
response = await chat_service.get_async_response(
response_method,
input,
model_name=model_name,
temperature=0.2,
max_tokens=1000,
is_structured=True,
pydantic_model=Joke)
print(response)
asyncio.run(main())
Note: Using Chat Service
- If response_method is "batch" the input should be list of input.
Example:
system_message = 'You are a helpful assistant.'
input = [{'system_message': system_message, 'user_message': 'Tell me a bear joke.'}, {'system_message': system_message, 'user_message': 'Tell me a cat joke.'}]
Using Database Connectors
from mle_core.config import get_db_connector
def main():
db_type = "postgres" # or "mongo"
db_connector = get_db_connector(db_type)
db_connection = db_connector.get_connection()
print(db_connection)
if __name__ == "__main__":
main()
Using Evaluators
from mle_core.evaluators.tests_results_generation import Evaluator
def main():
input_file_path = 'test_case.json'
output_file_path = 'output_file.csv'
output_file_type = 'csv'
# assume your evaluator_function be f_eval_function
try:
evaluator = Evaluator(input_file_path,f_eval_function, output_file_path, output_file_type.lower())
evaluator.execute()
print("Processing completed successfully.")
except Exception as e:
print(f"An error occurred: {str(e)}")
if __name__ == '__main__':
main()
Using Checkers
Fact checker and hyperbole detector
from mle_core.checkers import f_hyperbole_detector, f_fact_checker
# The context basically refers to the knowledge base
# question is generally the user prompt to the system
# answer generally is the LLM generated output
fact = f_fact_checker(question, context, answer)
hyperbole = f_hyperbole_detector(question, context, answer)
Database consistency checker
from mle_core.connectors.db import Neo4jConnector
from mle_core.checkers import Neo4jSanityCheck
uri = os.getenv('NEO4J_URI')
user = os.getenv('NEO4J_USERNAME')
password = os.getenv('NEO4J_PASSWORD')
if not uri or not user or not password:
raise ValueError("Missing one or more required environment variables: NEO4J_URI, NEO4J_USERNAME, NEO4J_PASSWORD")
neo4j_connection = Neo4jConnector(uri=uri, user=user, password=password)
def check_database_consistency():
try:
neo4j_sanity_check = Neo4jSanityCheck(neo4j_connection)
results = neo4j_sanity_check.run_checks()
return results
except Exception as e:
print(f"An error occurred during database consistency check: {str(e)}")
Grammar checker
# language-tool-python
from mle_core.checkers import JsonGrammarChecker
def check_grammar_language_tool(json):
result = {"success": True, "error": []}
keywords = ['a','b'] # these are the words not to run the grammar checker on
json_grammar_checker = JsonGrammarChecker(json, keywords)
errors = json_grammar_checker.check_json_for_errors()
return errors
# Prowriter
def grammar_check_prowriter(prompt):
try:
result = check_grammar_prowriter(prompt)
return result
except Exception as e:
print(f"An error occurred: {e}")
return False
Contributing
Feel free to contribute by making a pull request. Please ensure your code follows the style guidelines and includes appropriate tests.
License
This repository is licensed under the MIT License. See the LICENSE file for more information.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mle_core-0.0.3.tar.gz
.
File metadata
- Download URL: mle_core-0.0.3.tar.gz
- Upload date:
- Size: 20.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 44c4443593f3e117e2f7515343a9232aa3ef550f1f0db5d400aaf9d2e74b8b30 |
|
MD5 | 9a228a9f9ff557f6bb1bd23f0c005552 |
|
BLAKE2b-256 | b2871154e4e57f8b381cccc7b70af80d6f68018a8a2a0fe237878d29abbb78ce |
File details
Details for the file mle_core-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: mle_core-0.0.3-py3-none-any.whl
- Upload date:
- Size: 24.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73dee14cce873f9a0069e42e833dd50f79e3d91bdb948cd2da1b2db58ec9d97b |
|
MD5 | 725bce632061d497cb443f585aa72797 |
|
BLAKE2b-256 | 06a0e8d3e7116c31ee38c1e3ce5b935e398f9dda96c5848f493de9a291f99431 |