Skip to main content

Version and deploy your models following GitOps principles

Project description

image

Check, test and release Maintainability codecov PyPi License: Apache 2.0

MLEM helps you with machine learning model deployment. It saves ML models in a standard format that can be used in a variety of downstream deployment scenarios such as real-time serving through a REST API or batch processing.

  • Run your model anywhere you want: package it as a Python package, a Docker Image or deploy it to Heroku (SageMaker, Kubernetes and more platforms are coming). Switch between formats and deployment platforms with a single command thanks to unified abstraction.
  • Simple YAML file to save model metadata: automatically package Python env requirements and input data specifications into a ready-to-deploy format. Use the same human-readable format for any ML framework.
  • Stick to your training workflow: MLEM doesn't ask you to rewrite your training code. To start using packaging or deployment machinery, add just two lines to your python script: one to import the library and one to save the model.
  • Developer-first experience: use CLI when you feel like DevOps and API when you feel like a developer.

Why MLEM?

  • MLEM automatically detects ML framework, Python requirements, model methods and input/output data specifications, saving your time and preventing manual errors.
  • MLEM is designed for Git-centered ML models development. Use GitOps with Git as the single source of truth. Enable GitFlow and other software engineering best practices.
  • MLEM is made with Unix philosophy in mind - one tool solves one problem very well. Plug MLEM into your toolset, easily integrating it with other tools like DVC.

Usage

Installation

Install MLEM with pip:

$ pip install mlem

To install the development version, run:

$ pip install git+https://github.com/iterative/mlem

Save your model

# train.py
from mlem.api import save
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris

def main():
    data, y = load_iris(return_X_y=True, as_frame=True)
    rf = RandomForestClassifier(
        n_jobs=2,
        random_state=42,
    )
    rf.fit(data, y)

    save(
        rf,
        "rf",
        tmp_sample_data=data,
        tags=["random-forest", "classifier"],
        description="Random Forest Classifier",
    )

if __name__ == "__main__":
    main()

Check out what we have:

$ ls
rf
rf.mlem
$ cat rf.mlem
Click to show `cat` output
artifacts:
  data:
    hash: ea4f1bf769414fdacc2075ef9de73be5
    size: 163651
    uri: rf
description: Random Forest Classifier
model_type:
  methods:
    predict:
      args:
      - name: data
        type_:
          columns:
          - sepal length (cm)
          - sepal width (cm)
          - petal length (cm)
          - petal width (cm)
          dtypes:
          - float64
          - float64
          - float64
          - float64
          index_cols: []
          type: dataframe
      name: predict
      returns:
        dtype: int64
        shape:
        - null
        type: ndarray
    predict_proba:
      args:
      - name: data
        type_:
          columns:
          - sepal length (cm)
          - sepal width (cm)
          - petal length (cm)
          - petal width (cm)
          dtypes:
          - float64
          - float64
          - float64
          - float64
          index_cols: []
          type: dataframe
      name: predict_proba
      returns:
        dtype: float64
        shape:
        - null
        - 3
        type: ndarray
    sklearn_predict:
      args:
      - name: X
        type_:
          columns:
          - sepal length (cm)
          - sepal width (cm)
          - petal length (cm)
          - petal width (cm)
          dtypes:
          - float64
          - float64
          - float64
          - float64
          index_cols: []
          type: dataframe
      name: predict
      returns:
        dtype: int64
        shape:
        - null
        type: ndarray
    sklearn_predict_proba:
      args:
      - name: X
        type_:
          columns:
          - sepal length (cm)
          - sepal width (cm)
          - petal length (cm)
          - petal width (cm)
          dtypes:
          - float64
          - float64
          - float64
          - float64
          index_cols: []
          type: dataframe
      name: predict_proba
      returns:
        dtype: float64
        shape:
        - null
        - 3
        type: ndarray
  type: sklearn
object_type: model
requirements:
- module: sklearn
  version: 1.0.2
- module: pandas
  version: 1.4.1
- module: numpy
  version: 1.22.3
tags:
- random-forest
- classifier

Deploy it

Create an environment to deploy your model:

$ mlem create env heroku staging
💾 Saving env to staging.mlem

Define the deployment:

$ mlem create deployment heroku myservice -c app_name=mlem-quick-start -c model=rf -c env=staging
💾 Saving deployment to myservice.mlem

Deploy it:

$ mlem deploy create myservice
⏳️ Loading deployment from .mlem/deployment/myservice.mlem
🔗 Loading link to .mlem/env/staging.mlem
🔗 Loading link to .mlem/model/rf.mlem
💾 Updating deployment at .mlem/deployment/myservice.mlem
🏛 Creating Heroku App example-mlem-get-started
💾 Updating deployment at .mlem/deployment/myservice.mlem
🛠 Creating docker image for heroku
  💼 Adding model files...
  🛠 Generating dockerfile...
  💼 Adding sources...
  💼 Generating requirements file...
  🛠 Building docker image registry.heroku.com/example-mlem-get-started/web...
    Built docker image registry.heroku.com/example-mlem-get-started/web
  🔼 Pushed image registry.heroku.com/example-mlem-get-started/web to remote registry at host registry.heroku.com
💾 Updating deployment at .mlem/deployment/myservice.mlem
🛠 Releasing app my-mlem-service formation
💾 Updating deployment at .mlem/deployment/myservice.mlem
✅  Service example-mlem-get-started is up. You can check it out at https://mlem-quick-start.herokuapp.com/

Check the deployment

https://mlem-quick-start.herokuapp.com

Let's save some data first:

# save_data.py
from mlem.api import save
from sklearn.datasets import load_iris

def main():
    data, y = load_iris(return_X_y=True, as_frame=True)
    save(
        data,
        "train.csv",
        description="Training data for Random Forest Classifier",
    )

if __name__ == "__main__":
    main()
$ mlem apply-remote http train.csv -c host=https://mlem-quick-start.herokuapp.com -c port=80 --json

Stop the deployment

$ mlem deploy status myservice.mlem
running
$ mlem deploy teardown myservice.mlem
⏳️ Loading deployment from myservice.mlem
🔗 Loading link to file://staging.mlem
🔻 Deleting mlem-quick-start heroku app
💾 Updating deployment at myservice.mlem
$ mlem deploy status myservice.mlem
not_deployed

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlem-0.2.1.tar.gz (167.9 kB view details)

Uploaded Source

Built Distribution

mlem-0.2.1-py3-none-any.whl (136.8 kB view details)

Uploaded Python 3

File details

Details for the file mlem-0.2.1.tar.gz.

File metadata

  • Download URL: mlem-0.2.1.tar.gz
  • Upload date:
  • Size: 167.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for mlem-0.2.1.tar.gz
Algorithm Hash digest
SHA256 bfda4cebaf07e6a3a09ed9f48a7e54effa9bbcd944d939a9c40429c0c0997384
MD5 6bf0e2175b7ae7ca1572f5f3ce2ffbec
BLAKE2b-256 80d8d83cf63086467c733d27f61a806655882ad842ff85e3f627626d3a8969f6

See more details on using hashes here.

File details

Details for the file mlem-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: mlem-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 136.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for mlem-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e73590794837c5a403489274a07e7b87bc39c73a9a48c060092bcbe163ee6002
MD5 0739bf2b59044d6ea918f05ac03d3f77
BLAKE2b-256 a433c6b04414ae89abbb3dd40ecefd5807e904b98020dcfc6490bbed67d21d76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page