Skip to main content

MLflow XGBoost flavour with probabilities

Project description

mlflow-xgboost-proba

Release Build status codecov Commit activity License

MLflow XGBoost flavour with probabilities

This package implements mlflow_xgboost_proba MLflow flavour, which allows to run predict_proba method of xgboost models during inference with MLflow mlflow models serve CLI command.

Implementation is based on mlflow.xgboost module, which is copied and modified to have the wrapper with predict_proba method and predict method calling predict_proba by default.

The API of the module is identical to mlflow.xgboost, only without support of autologging.

Usage

Install package with pip install mlflow-xgboost-proba.

Prepare XGBoost model and save as MLflow model:

from xgboost import XGBClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

import mlflow_xgboost_proba

# Prepare training dataset
data = load_iris()
X_train, X_test, y_train, y_test = train_test_split(data["data"], data["target"], test_size=0.2)
# Prepare XGBoost model
xgb_model = XGBClassifier(n_estimators=2, max_depth=2, learning_rate=1, objective="binary:logistic")
xgb_model.fit(X_train, y_train)
# Save XGBoost model as MLflow model
mlflow_xgboost_proba.save_model(xgb_model, "mlflow_xgb_iris_classifier")

Run model inference with the probabilities using MLflow:

mlflow models serve --model-uri mlflow_xgb_iris_classifier --env-manager local

Repository initiated with fpgmaas/cookiecutter-poetry.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlflow_xgboost_proba-0.3.1.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

mlflow_xgboost_proba-0.3.1-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file mlflow_xgboost_proba-0.3.1.tar.gz.

File metadata

  • Download URL: mlflow_xgboost_proba-0.3.1.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1022-azure

File hashes

Hashes for mlflow_xgboost_proba-0.3.1.tar.gz
Algorithm Hash digest
SHA256 aa327ea039fae914d3414ec1377ee44b835bf3e7da87516efa2409675fed7fe1
MD5 35a7beee8baca2bd2f5e8365fd860e16
BLAKE2b-256 433c2a5c8e9f911117dfbc378ff1819ef6d008f798a694d990700a7e8a7d2cb4

See more details on using hashes here.

File details

Details for the file mlflow_xgboost_proba-0.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for mlflow_xgboost_proba-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 45ad4da70b302d2760ec538bfe77c09acef553afa80711f8e293f11c41dc5226
MD5 30995bd1991a0609fb474774aae1787e
BLAKE2b-256 0f0a79c2df858b77557a82d3b143347a21bd2ca1b6e315fd5a13e0fd24d5e210

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page