Skip to main content

Extends scikit-learn with a couple of new models, transformers, metrics, plotting.

Project description

https://github.com/sdpython/mlinsights/blob/master/_doc/sphinxdoc/source/phdoc_static/project_ico.png?raw=true

mlinsights - extensions to scikit-learn

Build status Build Status Windows https://circleci.com/gh/sdpython/mlinsights/tree/master.svg?style=svg https://dev.azure.com/xavierdupre3/mlinsights/_apis/build/status/sdpython.mlinsights%20(2) https://badge.fury.io/py/mlinsights.svg MIT License Requirements Status https://codecov.io/github/sdpython/mlinsights/coverage.svg?branch=master GitHub Issues Notebook Coverage Downloads Forks Stars size

mlinsights extends scikit-learn with a couple of new models, transformers, metrics, plotting. It provides new trainers such as QuantileLinearRegression which trains a linear regression with L1 norm non-linear correlation based on decision trees, or QuantileMLPRegressor a modification of scikit-learn’s MLPRegressor which trains a multi-layer perceptron with L1 norm. It also explores PredictableTSNE which trains a supervized model to replicate t-SNE results or a PiecewiseRegression which partitions the data before fitting a model on each bucket.

Function pipeline2dot converts a pipeline into a graph:

from mlinsights.plotting import pipeline2dot
dot = pipeline2dot(clf, df)
https://github.com/sdpython/mlinsights/raw/master/_doc/pipeline.png

History

current - 2021-01-03 - 0.00Mb

  • 89: Install fails: ModuleNotFoundError: No module named ‘sklearn’ (2021-01-03)

  • 92: QuantileMLPRegressor does not work with scikit-learn 0.24 (2021-01-01)

  • 91: Fixes regression criterion for scikit-learn 0.24 (2021-01-01)

  • 90: Fixes PipelineCache for scikit-learn 0.24 (2021-01-01)

0.2.508 - 2020-09-02 - 0.43Mb

  • 88: Change for scikit-learn 0.24 (2020-09-02)

  • 87: Set up CI with Azure Pipelines (2020-09-02)

  • 86: Update CI, use python 3.8 (2020-09-02)

  • 71: update kmeans l1 to the latest kmeans (signatures changed) (2020-08-31)

  • 84: style (2020-08-30)

0.2.491 - 2020-08-06 - 0.83Mb

  • 83: Upgrade version (2020-08-06)

  • 82: Fixes #81, skl 0.22, 0.23 together (2020-08-06)

  • 81: Make mlinsights work with scikit-learn 0.22 and 0.23 (2020-08-06)

  • 79: pipeline2dot fails with ‘passthrough’ (2020-07-16)

0.2.463 - 2020-06-29 - 0.83Mb

  • 78: Removes strong dependency on pyquickhelper (2020-06-29)

0.2.450 - 2020-06-08 - 0.83Mb

  • 77: Add parameter trainable to TransferTransformer (2020-06-07)

0.2.447 - 2020-06-03 - 0.83Mb

  • 76: ConstraintKMeans does not produce convex clusters. (2020-06-03)

  • 75: Moves kmeans with constraint from papierstat. (2020-05-27)

  • 74: Fix PipelineCache after as scikti-learn 0.23 changed the way parameters is handle in pipelines (2020-05-15)

  • 73: ClassifierKMeans.__repr__ fails with scikit-learn 0.23 (2020-05-14)

  • 69: Optimizes k-means with norm L1 (2020-01-13)

0.2.360 - 2019-09-15 - 0.68Mb

  • 66: Fix visualisation graph: does not work when column index is an integer in ColumnTransformer (2019-09-15)

  • 59: Add GaussianProcesses to the notebook about confidence interval and regression (2019-09-15)

  • 65: Implements a TargetTransformClassifier similar to TargetTransformRegressor (2019-08-24)

  • 64: Implements a different version of TargetTransformRegressor which includes predefined functions (2019-08-24)

  • 63: Add a transform which transform the target and applies the inverse function of the prediction before scoring (2019-08-24)

  • 49: fix menu in documentation (2019-08-24)

0.2.312 - 2019-07-13 - 0.66Mb

  • 61: Fix bug in pipeline2dot when keyword “passthrough is used” (2019-07-11)

  • 60: Fix visualisation of pipeline which contains string “passthrough” (2019-07-09)

  • 58: Explores a way to compute recommandations without training (2019-06-05)

0.2.288 - 2019-05-28 - 0.66Mb

  • 56: Fixes #55, explore caching for scikit-learn pipeline (2019-05-22)

  • 55: Explore caching for gridsearchCV (2019-05-22)

  • 53: implements a function to extract intermediate model outputs within a pipeline (2019-05-07)

  • 51: Implements a tfidfvectorizer which keeps more information about n-grams (2019-04-26)

  • 46: implements a way to determine close leaves in a decision tree (2019-04-01)

  • 44: implements a model which produces confidence intervals based on bootstrapping (2019-03-29)

  • 40: implements a custom criterion for a decision tree optimizing for a linear regression (2019-03-28)

  • 39: implements a custom criterion for decision tree (2019-03-26)

  • 41: implements a direct call to a lapack function from cython (2019-03-25)

  • 38: better implementation of a regression criterion (2019-03-25)

0.1.199 - 2019-03-05 - 0.05Mb

  • 37: implements interaction_only for polynomial features (2019-02-26)

  • 36: add parameter include_bias to extended features (2019-02-25)

  • 34: rename PiecewiseLinearRegression into PiecewiseRegression (2019-02-23)

  • 33: implement the piecewise classifier (2019-02-23)

  • 31: uses joblib for piecewise linear regression (2019-02-23)

  • 30: explore transpose matrix before computing the polynomial features (2019-02-17)

  • 29: explore different implementation of polynomialfeatures (2019-02-15)

  • 28: implement PiecewiseLinearRegression (2019-02-10)

  • 27: implement TransferTransformer (2019-02-04)

  • 26: add function to convert a scikit-learn pipeline into a graph (2019-02-01)

  • 25: implements kind of trainable t-SNE (2019-01-31)

  • 6: use keras and pytorch (2019-01-03)

  • 22: modifies plot gallery to impose coordinates (2018-11-10)

  • 20: implements a QuantileMLPRegressor (quantile regression with MLP) (2018-10-22)

  • 19: fix issues introduced with changes in keras 2.2.4 (2018-10-06)

  • 18: remove warning from scikit-learn about cloning (2018-09-16)

  • 16: move CI to python 3.7 (2018-08-21)

  • 17: replace as_matrix by values (pandas deprecated warning) (2018-07-29)

  • 14: add transform to convert a learner into a transform (sometimes called a featurizer) (2018-06-19)

  • 13: add transform to do model stacking (2018-06-19)

  • 8: move items from papierstat (2018-06-19)

  • 12: fix bug in quantile regression: wrong weight for linear regression (2018-06-16)

  • 11: specifying quantile (2018-06-16)

  • 4: add function to compute non linear correlations (2018-06-16)

  • 10: implements combination between logistic regression and k-means (2018-05-27)

  • 9: move items from ensae_teaching_cs (2018-05-08)

  • 7: add quantile regression (2018-05-07)

  • 5: replace flake8 by code style (2018-04-14)

  • 1: change background for cells in notebooks converted into rst then in html, highlight-ipython3 (2018-01-05)

  • 2: save features and metadatas for the search engine and retrieves them (2017-12-03)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlinsights-0.3.543.tar.gz (704.8 kB view details)

Uploaded Source

Built Distribution

mlinsights-0.3.543-cp39-cp39-win_amd64.whl (493.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

File details

Details for the file mlinsights-0.3.543.tar.gz.

File metadata

  • Download URL: mlinsights-0.3.543.tar.gz
  • Upload date:
  • Size: 704.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.9.1

File hashes

Hashes for mlinsights-0.3.543.tar.gz
Algorithm Hash digest
SHA256 ed8c0f894ac3f76ea84a7878fb53ab68070845b65241145a5ebc7220eb410314
MD5 c57894dd497781e8552a6529df800c9c
BLAKE2b-256 31c75d35012f0c1a9c86d745db55a506417cd1c804d5335589933866e1cf78cc

See more details on using hashes here.

File details

Details for the file mlinsights-0.3.543-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: mlinsights-0.3.543-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 493.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.55.0 CPython/3.9.1

File hashes

Hashes for mlinsights-0.3.543-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 708a056dd1f82b152efa506bd87e49490c2bc53c145a6968e2e2475bd9335bd9
MD5 7b99d4f0cc3dda08c366382f874743a2
BLAKE2b-256 b7224978447af4ac5d39ce0fe5c517f0019a3f4bcf3b330bfbbca174421c4e83

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page