Multimodal Large Language Models
Project description
MLLM
Multimodal Large Language Models
Explore the docs »
View Demo
·
Report Bug
·
Request Feature
Installation
pip install mllm
Usage
Create an MLLM router with a list of preferred models
import os
from mllm import Router
os.environ["OPENAI_API_KEY"] = "..."
os.environ["ANTHROPIC_API_KEY"] = "..."
os.environ["GEMINI_API_KEY"] = "..."
router = Router(
preference=["gpt-4-turbo", "anthropic/claude-3-opus-20240229", "gemini/gemini-pro-vision"]
)
Create a new role based chat thread
from mllm import RoleThread
thread = RoleThread(owner_id="dolores@agentsea.ai")
thread.post(role="user", msg="Describe the image", images=["data:image/jpeg;base64,..."])
Chat with the MLLM, store the prompt data in the namespace foo
response = router.chat(thread, namespace="foo")
thread.add_msg(response.msg)
Ask for a structured response
from pydantic import BaseModel
class Animal(BaseModel):
species: str
color: str
thread.post(
role="user",
msg=f"What animal is in this image? Please output as schema {Animal.model_json_schema()}"
images=["data:image/jpeg;base64,..."]
)
response = router.chat(thread, namespace="animal", expect=Animal)
animal_parsed = response.parsed
assert type(animal_parsed) == Animal
Find a saved thread or a prompt
RoleThread.find(id="123")
Prompt.find(id="456)
To store a raw openai prompt
from mllm import Prompt, RoleThread
thread = RoleThread()
msg = {
"role": "user",
"content": [
{
"type": "text",
"text": "Whats in this image?",
},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,..."},
}
]
}
role_message = RoleMessage.from_openai(msg)
thread.add_msg(role_message)
response = call_openai(thread.to_openai())
response_msg = RoleMessage.from_openai(response["choices"][0]["message"])
saved_prompt = Prompt(thread, response_msg, namespace="foo")
Backends
Thread and prompt storage can be backed by:
- Sqlite
- Postgresql
Sqlite will be used by default. To use postgres simply configure the env vars:
DB_TYPE=postgres
DB_NAME=mllm
DB_HOST=localhost
DB_USER=postgres
DB_PASS=abc123
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mllm-0.1.20.tar.gz
(10.0 kB
view details)
Built Distribution
mllm-0.1.20-py3-none-any.whl
(11.1 kB
view details)
File details
Details for the file mllm-0.1.20.tar.gz
.
File metadata
- Download URL: mllm-0.1.20.tar.gz
- Upload date:
- Size: 10.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 61b2c2e38ce5b0ae43c489f4ad91de96d172f1a8be9619a137f69cbabd21581a |
|
MD5 | 0f7a9886a0597ebe14032a89bf5d21e0 |
|
BLAKE2b-256 | aed38030f23edc00f506a422dbacf7216fcece85c56706a479358e5e123ca17e |
File details
Details for the file mllm-0.1.20-py3-none-any.whl
.
File metadata
- Download URL: mllm-0.1.20-py3-none-any.whl
- Upload date:
- Size: 11.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d010ee6d01e420d106628b4ea40b9860effbc36672a81eaa17d36441726bc996 |
|
MD5 | adba12fb491e84675083df08795abb79 |
|
BLAKE2b-256 | 75055c07b751f1109d7b71fd969fe5ff738f6cfbbcd04721a5cf94ecbd934aba |