Skip to main content

No project description provided

Project description

MLOps ODS

This project for ml model with MLOps instruments

the methodology of repo (GitHub flow - one main branch, and developing in other brunches):

  • main branch: 'master'
  • other branches: 'fix-', 'feature-', 'model-', 'experiment-'
poetry build --format=wheel

Docker image (build / run):

docker build . -t mlops_ods_image
docker run -it mlops_ods_image /bin/bash

build for linux:

docker build . -t mlops_ods_image --platform linux/amd64

run with port and volumes if necessary:

docker run -p 8888:8888 -v {path-to-local-folder-(pwd)}:/app/volumes -it mlops_ods_image /bin/bash

documentation of jupyter notebooks with quarto:

quarto render

quarto preview  src/mlops_ods/notebooks/eda.ipynb
quarto render src/mlops_ods/notebooks/eda.ipynb --to html

snakemake command inside docker:

snakemake --cores 10
snakemake --dag | dot -Tsvg > dag.svg

docker ps
docker cp <CONTAINER ID>:/app/dag.svg .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlops_ods-0.1.202406191453.tar.gz (1.5 MB view details)

Uploaded Source

Built Distribution

mlops_ods-0.1.202406191453-py3-none-any.whl (1.6 MB view details)

Uploaded Python 3

File details

Details for the file mlops_ods-0.1.202406191453.tar.gz.

File metadata

  • Download URL: mlops_ods-0.1.202406191453.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for mlops_ods-0.1.202406191453.tar.gz
Algorithm Hash digest
SHA256 5af9133ad6f4ac2fd2302575486d63dfd75c4577e6ca9276c49aeddf25e47230
MD5 65e94738fc5d703272c03739889d08e0
BLAKE2b-256 598f85572802de8d644c621f0cdc00b6758fade807e13fa9848dc51df3bd288c

See more details on using hashes here.

File details

Details for the file mlops_ods-0.1.202406191453-py3-none-any.whl.

File metadata

File hashes

Hashes for mlops_ods-0.1.202406191453-py3-none-any.whl
Algorithm Hash digest
SHA256 10701e2bc1b6f972c0cbf25174c5b784c2cc8f6d410e37a55ae79cb118b56886
MD5 5794f5001498712e7cf32e63c41cff6e
BLAKE2b-256 f0d5e5c59a5e52a9ab0c846b561780d62cc871ff31034606b6a1b03b348b1700

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page