Skip to main content

No project description provided

Project description

MLOps ODS

This project for ml model with MLOps instruments

the methodology of repo (GitHub flow - one main branch, and developing in other brunches):

  • main branch: 'master'
  • other branches: 'fix-', 'feature-', 'model-', 'experiment-'
poetry build --format=wheel

Docker image (build / run):

docker build . -t mlops_ods_image
docker run -it mlops_ods_image /bin/bash

build for linux:

docker build . -t mlops_ods_image --platform linux/amd64

run with port and volumes if necessary:

docker run -p 8888:8888 -v {path-to-local-folder-(pwd)}:/app/volumes -it mlops_ods_image /bin/bash

documentation of jupyter notebooks with quarto:

quarto render

quarto preview  src/mlops_ods/notebooks/eda.ipynb
quarto render src/mlops_ods/notebooks/eda.ipynb --to html

snakemake command inside docker:

snakemake --cores 10
snakemake --dag | dot -Tsvg > dag.svg

docker ps
docker cp <CONTAINER ID>:/app/dag.svg .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlops_ods-0.1.202406241835.tar.gz (1.5 MB view details)

Uploaded Source

Built Distribution

mlops_ods-0.1.202406241835-py3-none-any.whl (1.6 MB view details)

Uploaded Python 3

File details

Details for the file mlops_ods-0.1.202406241835.tar.gz.

File metadata

  • Download URL: mlops_ods-0.1.202406241835.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for mlops_ods-0.1.202406241835.tar.gz
Algorithm Hash digest
SHA256 94dbde5d3c5e793a4456a3d2297403e89c722e45ed03beb0d17eb70b6d1f5015
MD5 2226731540b73c65cba658a6cfe7bfcb
BLAKE2b-256 33077be3524c06e78e299fe5ecc3b6d0b777052860bf8a2f3a8063e0079291ae

See more details on using hashes here.

File details

Details for the file mlops_ods-0.1.202406241835-py3-none-any.whl.

File metadata

File hashes

Hashes for mlops_ods-0.1.202406241835-py3-none-any.whl
Algorithm Hash digest
SHA256 52cf111c5191c9db01e35c16b389ec210a2a2c2b3d02f1c779e355f7ce8afddd
MD5 91ea4940cbd9a941b91c5d9648a24ce5
BLAKE2b-256 7cd4934c1bf2ad3633f0b93a46cb46731d218682962f754e12bec241a3c05ef9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page