Skip to main content

A Common Language for EO Machine Learning Data

Project description

mlstac

A Common Language for EO Machine Learning Data

import mlstac

# Read the data online
path = "https://huggingface.co/datasets/JulioContrerasH/prueba1/resolve/main/images_2000.mlstac"
metadata = mlstac.core.load_metadata(path)
data = mlstac.core.load_data(metadata[0:4])
data.shape

# Read the data locally
path = "/home/cesar/Downloads/images_2000.mlstac"
dataset = mlstac.core.load_metadata(path)
data = mlstac.core.load_data(dataset[0:4])

# From mlstac to GEOTIFF
import rasterio as rio
path = "https://huggingface.co/datasets/JulioContrerasH/prueba1/resolve/main/images_2000.mlstac"
metadata = mlstac.core.load_metadata(path)
data, metadata = mlstac.core.load_data(metadata[0:1], save_metadata_datapoint=True)[0]
with rio.open("data.tif", "w", **metadata) as dst:
    dst.write(data)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlstac-0.1.5.tar.gz (23.2 kB view details)

Uploaded Source

Built Distribution

mlstac-0.1.5-py3-none-any.whl (29.6 kB view details)

Uploaded Python 3

File details

Details for the file mlstac-0.1.5.tar.gz.

File metadata

  • Download URL: mlstac-0.1.5.tar.gz
  • Upload date:
  • Size: 23.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/7.0.1 keyring/24.3.1 pkginfo/1.9.6 readme-renderer/34.0 requests-toolbelt/1.0.0 requests/2.32.3 rfc3986/1.5.0 tqdm/4.66.1 urllib3/2.2.1 CPython/3.10.12

File hashes

Hashes for mlstac-0.1.5.tar.gz
Algorithm Hash digest
SHA256 7042d181688cb98f38208653abd42df01023a3e731a6b33fe1b7c333291e6376
MD5 46dd864d7175fd2592b33a5e9bcb7e97
BLAKE2b-256 9c92c809c5a7d5236cd69b95b483ab338a950f222d71aaee58c5def22f82888d

See more details on using hashes here.

File details

Details for the file mlstac-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: mlstac-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 29.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/7.0.1 keyring/24.3.1 pkginfo/1.9.6 readme-renderer/34.0 requests-toolbelt/1.0.0 requests/2.32.3 rfc3986/1.5.0 tqdm/4.66.1 urllib3/2.2.1 CPython/3.10.12

File hashes

Hashes for mlstac-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 0ded71e537a52ffac418d80cd98c5b1338d7a66f6eff65338236dbf123203bc2
MD5 1dc83e004a46085ffcc07826060dea1d
BLAKE2b-256 4d897b802e4700e2887ae57661650d78d945f2fb58b4a784c3467d99d5bf4989

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page