Skip to main content

Open MMLab Computer Vision Foundation

Project description

https://img.shields.io/pypi/v/mmcv https://github.com/open-mmlab/mmcv/workflows/build/badge.svg https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg https://img.shields.io/github/license/open-mmlab/mmcv.svg

Introduction

MMCV is a foundational python library for computer vision research and supports many research projects in MMLAB, such as MMDetection and MMAction.

It provides the following functionalities.

  • Universal IO APIs

  • Image processing

  • Video processing

  • Image and annotation visualization

  • Useful utilities (progress bar, timer, …)

  • PyTorch runner with hooking mechanism

  • Various CNN architectures

See the documentation for more features and usage.

Note: MMCV requires Python 3.6+.

Installation

Try and start with

pip install mmcv

or install from source

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Note: If you would like to use opencv-python-headless instead of opencv-python, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmcv-nightly-0.5.4.dev20200517.tar.gz (118.9 kB view details)

Uploaded Source

Built Distributions

File details

Details for the file mmcv-nightly-0.5.4.dev20200517.tar.gz.

File metadata

  • Download URL: mmcv-nightly-0.5.4.dev20200517.tar.gz
  • Upload date:
  • Size: 118.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for mmcv-nightly-0.5.4.dev20200517.tar.gz
Algorithm Hash digest
SHA256 b4e28c8d1ebaf7829104e38607e82afda25c9ea65e78de696a1059e71d22679d
MD5 4a4dcb74ce3e66ff5f0cf44e95f9cb72
BLAKE2b-256 ffc62f1d36dbe3721bf94f004b2431f937913573a8080451e2344784ffd88e19

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.4.dev20200517-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.4.dev20200517-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d7d83a4e01969a872164b6fa8de427192e58e5bcdad876ebf5acc7303ce32516
MD5 8111863b5b372813675053527bafe838
BLAKE2b-256 93f6d657cf3dfde710714d88eda834dc6ec78d079ebf0868f62f1a1d13282989

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.4.dev20200517-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.4.dev20200517-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4f94c0470056ae5d49e238a19ee3a858a247f8d015f9c0f649de8433e5ef605f
MD5 d579a4365bc8b1c17d0da14d290fe1ea
BLAKE2b-256 e78885da1631b7de107b06ab50d5758644924dbf05af033d6888e539a12951ef

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.4.dev20200517-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.4.dev20200517-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2224b2cff6064b9c4734c12b1bbf4991d9b733378633eab085e8b234781d317e
MD5 03f37574e2bf016c2f364075fde7254b
BLAKE2b-256 69375e241c9f36cb48883c8b0062f10b7b8444355fc65de6f3b510426e15eaf7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page