Skip to main content

Open MMLab Computer Vision Foundation

Project description

https://img.shields.io/pypi/v/mmcv https://github.com/open-mmlab/mmcv/workflows/build/badge.svg https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg https://img.shields.io/github/license/open-mmlab/mmcv.svg

Introduction

MMCV is a foundational python library for computer vision research and supports many research projects in MMLAB, such as MMDetection and MMAction.

It provides the following functionalities.

  • Universal IO APIs

  • Image processing

  • Video processing

  • Image and annotation visualization

  • Useful utilities (progress bar, timer, …)

  • PyTorch runner with hooking mechanism

  • Various CNN architectures

See the documentation for more features and usage.

Note: MMCV requires Python 3.6+.

Installation

Try and start with

pip install mmcv

or install from source

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Note: If you would like to use opencv-python-headless instead of opencv-python, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmcv-nightly-0.5.7.dev20200528.tar.gz (120.2 kB view details)

Uploaded Source

Built Distributions

File details

Details for the file mmcv-nightly-0.5.7.dev20200528.tar.gz.

File metadata

  • Download URL: mmcv-nightly-0.5.7.dev20200528.tar.gz
  • Upload date:
  • Size: 120.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for mmcv-nightly-0.5.7.dev20200528.tar.gz
Algorithm Hash digest
SHA256 684fcb5f16e9ebe85c32df2e1120bdf284481b1e4294666f6ec22c5add5abeac
MD5 a430970fb4faa26f16e0debeeef4a884
BLAKE2b-256 73c867a2c17027c2b3a140f2d1ea713bef359d8e94f117b4583cace1929457b6

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.7.dev20200528-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.7.dev20200528-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2d1faf8fcda7565b5a6baf02b5cbfe4ad8687ee8287de9de813700671e63e6fd
MD5 c440d04c0ebb441d5ca592eb70377bbb
BLAKE2b-256 16636997b4383a8c0b876510b6d01bc9d46a6f6e4e580b5bfc365a80509512bd

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.7.dev20200528-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.7.dev20200528-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fe8524c17d1ca5e417e1fce115214362ae00630374f8c3bb5a50c4b1e4bbcfd0
MD5 d209688d959e8b97df779ca68fddb6ed
BLAKE2b-256 2f40565acb553a16ada8295fe3708468129cbe1344c484e59b487c86aaeeaee4

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.7.dev20200528-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.7.dev20200528-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ef41c780ee8c613558b3b3fb1032633dae3cf09ef0f6c4a8b3d05c66efc0c479
MD5 cd302e5391bb9f68d0379d5a4d046077
BLAKE2b-256 76fef08ce602c59a78966c73502a519b24e2f4922b756a9a9aacae3b8daf9e0c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page