Skip to main content

Open MMLab Computer Vision Foundation

Project description

https://img.shields.io/pypi/v/mmcv https://github.com/open-mmlab/mmcv/workflows/build/badge.svg https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg https://img.shields.io/github/license/open-mmlab/mmcv.svg

Introduction

MMCV is a foundational python library for computer vision research and supports many research projects in MMLAB, such as MMDetection and MMAction.

It provides the following functionalities.

  • Universal IO APIs

  • Image processing

  • Video processing

  • Image and annotation visualization

  • Useful utilities (progress bar, timer, …)

  • PyTorch runner with hooking mechanism

  • Various CNN architectures

See the documentation for more features and usage.

Note: MMCV requires Python 3.6+.

Installation

Try and start with

pip install mmcv

or install from source

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Note: If you would like to use opencv-python-headless instead of opencv-python, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmcv-nightly-0.5.9.dev20200602.tar.gz (74.4 kB view details)

Uploaded Source

Built Distributions

File details

Details for the file mmcv-nightly-0.5.9.dev20200602.tar.gz.

File metadata

  • Download URL: mmcv-nightly-0.5.9.dev20200602.tar.gz
  • Upload date:
  • Size: 74.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for mmcv-nightly-0.5.9.dev20200602.tar.gz
Algorithm Hash digest
SHA256 6fb485f4f09aebdd9affe1943fcab68272df0b5e7e8ac6b69488d980f7ef2ce9
MD5 664ba6aeebf47be902f4cafabc808ae3
BLAKE2b-256 d5446dfba01b3164de0326b513acaee3cbbde7e05053736f83b703b3807b63b6

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.9.dev20200602-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.9.dev20200602-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fb7d5a8074f8618511ebf2eab6d762ceec4fe40964f9a154a6b6684595fb4860
MD5 34d9076cb6a0e861700cf28e75c0e037
BLAKE2b-256 441be146eff18586752c75f448c82b03193cd509e7d84b61212d6723bb79034e

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.9.dev20200602-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.9.dev20200602-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9252ae48937888228c575a58aa601577b976a446fc6fe3c71e838685b57a2071
MD5 9c46ae0b68145f58124f3ac56b60e6ed
BLAKE2b-256 f278a36ff74f1d95ecf96bc974b61c785a3b42452dbdd849ec7e3523a52f6843

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.9.dev20200602-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.9.dev20200602-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6c9d1d3a4f963174cb118d4583bd017114e829cee8580ae81330ef3293429a2d
MD5 601eb3fc6aa099ed972dc0f6842e1f14
BLAKE2b-256 97e118175ef6a3da247163d70979e4a96cf127003fd7bd892f7ab3263a1a0aea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page