Skip to main content

Open MMLab Computer Vision Foundation

Project description

https://img.shields.io/pypi/v/mmcv https://github.com/open-mmlab/mmcv/workflows/build/badge.svg https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg https://img.shields.io/github/license/open-mmlab/mmcv.svg

Introduction

MMCV is a foundational python library for computer vision research and supports many research projects in MMLAB, such as MMDetection and MMAction.

It provides the following functionalities.

  • Universal IO APIs

  • Image processing

  • Video processing

  • Image and annotation visualization

  • Useful utilities (progress bar, timer, …)

  • PyTorch runner with hooking mechanism

  • Various CNN architectures

See the documentation for more features and usage.

Note: MMCV requires Python 3.6+.

Installation

Try and start with

pip install mmcv

or install from source

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Note: If you would like to use opencv-python-headless instead of opencv-python, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmcv-nightly-0.5.9.dev20200617.tar.gz (81.5 kB view details)

Uploaded Source

Built Distributions

File details

Details for the file mmcv-nightly-0.5.9.dev20200617.tar.gz.

File metadata

  • Download URL: mmcv-nightly-0.5.9.dev20200617.tar.gz
  • Upload date:
  • Size: 81.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for mmcv-nightly-0.5.9.dev20200617.tar.gz
Algorithm Hash digest
SHA256 36c0fd005d0244e307d18ef164886ad6ca5b0f48f9092ae7136da2151d88bd5d
MD5 29f5958533e89e4d0ed3413f9e9219cf
BLAKE2b-256 37a8374181491d3394c32c597f7d63a54dd255dfbf8733692fefa637bfcd9dab

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.9.dev20200617-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.9.dev20200617-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 16147454fcddb2856ccd7b822202508cde03d0170fc8613e59911b311e3cd8e1
MD5 9baaec85a4f3477ef485c234d6e70ef3
BLAKE2b-256 d9a6be0a3843e61d5653b355ee91ffe024630d76a7ea0028423c5e4cb2967119

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.9.dev20200617-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.9.dev20200617-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 df078e259b68e33c97aa81feba78656bf044704a2ad7aa1f2c8790f8bc2ecd11
MD5 4192f831e549b66d66835d4c7192be79
BLAKE2b-256 ba1e881016f5d3834c6b2195c3ce3195c31df5f07bbd5dfea53eb4589e2012fb

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.5.9.dev20200617-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.5.9.dev20200617-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a370b49eb36db5114023863978d45f549830e7a6a01218eb4a4a653987806af5
MD5 fb820dd0cc3ad442cca008a783977fa3
BLAKE2b-256 b26e34af4eed74acef051ea885fd2f422929c79efc0997c472becd825ae731b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page