Skip to main content

Open MMLab Computer Vision Foundation

Project description

https://img.shields.io/pypi/v/mmcv https://github.com/open-mmlab/mmcv/workflows/build/badge.svg https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg https://img.shields.io/github/license/open-mmlab/mmcv.svg

Introduction

MMCV is a foundational python library for computer vision research and supports many research projects in MMLAB, such as MMDetection and MMAction.

It provides the following functionalities.

  • Universal IO APIs

  • Image processing

  • Video processing

  • Image and annotation visualization

  • Useful utilities (progress bar, timer, …)

  • PyTorch runner with hooking mechanism

  • Various CNN architectures

See the documentation for more features and usage.

Note: MMCV requires Python 3.6+.

Installation

Try and start with

pip install mmcv

or install from source

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Note: If you would like to use opencv-python-headless instead of opencv-python, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmcv-nightly-0.6.1.dev20200619.tar.gz (84.0 kB view details)

Uploaded Source

Built Distributions

File details

Details for the file mmcv-nightly-0.6.1.dev20200619.tar.gz.

File metadata

  • Download URL: mmcv-nightly-0.6.1.dev20200619.tar.gz
  • Upload date:
  • Size: 84.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for mmcv-nightly-0.6.1.dev20200619.tar.gz
Algorithm Hash digest
SHA256 09e9bb7791b6f190ea6af8e57e7ef571cfcebc525205815b551e7c667519e368
MD5 87fabeb34326a6e53ff10e361381ca49
BLAKE2b-256 091ff01cf7743db5e4a5ced94ec4bab2fcecdd37748d3dc4e83f74ec6f8cce32

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.6.1.dev20200619-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.6.1.dev20200619-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0861a2e2c6bc73b5a16003a2073997c864fa5956a5601d11b782bc0ae5e42fde
MD5 dd227048a956b645f2269f8d247d3274
BLAKE2b-256 34760c58b299424339362c39f3eb3a80b0ba522817cad53fd8b3c27d788e38db

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.6.1.dev20200619-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.6.1.dev20200619-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 81915743171330760c7eead9b594206455051a1272644112565266b8cc3d4882
MD5 39a939c025c8e016d583a8623c7a48db
BLAKE2b-256 7a27bc58157c69f37bd51175bcadcf1f0ace3bdc5f0dad896b5b4d5c1ef7421a

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.6.1.dev20200619-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.6.1.dev20200619-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f23bc2fd440a4b29b918d80989b91656b8073c1b50adeff92b20e9b448d5b282
MD5 dc36592d00e90b5bbae7f1c8f638f734
BLAKE2b-256 a7ea27faaef61f8bea34e08daa3f0ab5191a9ef765bf7e590be2e906218ccd68

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page