Skip to main content

Open MMLab Computer Vision Foundation

Project description

https://img.shields.io/pypi/v/mmcv https://github.com/open-mmlab/mmcv/workflows/build/badge.svg https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg https://img.shields.io/github/license/open-mmlab/mmcv.svg

Introduction

MMCV is a foundational python library for computer vision research and supports many research projects in MMLAB, such as MMDetection and MMAction.

It provides the following functionalities.

  • Universal IO APIs

  • Image processing

  • Video processing

  • Image and annotation visualization

  • Useful utilities (progress bar, timer, …)

  • PyTorch runner with hooking mechanism

  • Various CNN architectures

See the documentation for more features and usage.

Note: MMCV requires Python 3.6+.

Installation

Try and start with

pip install mmcv

or install from source

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Note: If you would like to use opencv-python-headless instead of opencv-python, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmcv-nightly-0.6.1.dev20200623.tar.gz (84.0 kB view details)

Uploaded Source

Built Distributions

File details

Details for the file mmcv-nightly-0.6.1.dev20200623.tar.gz.

File metadata

  • Download URL: mmcv-nightly-0.6.1.dev20200623.tar.gz
  • Upload date:
  • Size: 84.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for mmcv-nightly-0.6.1.dev20200623.tar.gz
Algorithm Hash digest
SHA256 6d9bb8b46f0497562c285295de3f69b936f84ac6ceda914d0dc7bde2d0964bc8
MD5 7f9e3337a2ff7fad5c9526065b77f73c
BLAKE2b-256 1b204d6cac8915301967c5022e0c463d64794e225eee37bc8f9c54fda032d953

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.6.1.dev20200623-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.6.1.dev20200623-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3b4b39009a7073f9d55695176688674ff3e0645276b97f0b05a499ac3e271d09
MD5 746bdf221f08ed01fd3f78d2de49f3d0
BLAKE2b-256 d1bfc123d42976eeb3281cd77fee12d24ef01e1c01480d265f65ba99ae40a934

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.6.1.dev20200623-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.6.1.dev20200623-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5d99c47fe1258f300004b69b794fd15ad69f91216dd78bf1cd6d84ad428a1156
MD5 efe82eadc9a8e7bc8b03de6dd2497885
BLAKE2b-256 d2edde7d2889eccc11581b8e925a56022f22da0b9387e770dd4dc0e48561e215

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.6.1.dev20200623-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.6.1.dev20200623-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 75c702afd9bd59f4c0c4c6cdb5b4d793c5b56361fc8a76573bd9623428a23c7a
MD5 0ed36c8e2ee235c559b0404a2d4aff17
BLAKE2b-256 01f5e5a3fb853cdf350573fc45bf45fbded0d41e0429d05852b10701e69b0f71

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page