Skip to main content

Open MMLab Computer Vision Foundation

Project description

https://img.shields.io/pypi/v/mmcv https://github.com/open-mmlab/mmcv/workflows/build/badge.svg https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg https://img.shields.io/github/license/open-mmlab/mmcv.svg

Introduction

MMCV is a foundational python library for computer vision research and supports many research projects in MMLAB, such as MMDetection and MMAction.

It provides the following functionalities.

  • Universal IO APIs

  • Image processing

  • Video processing

  • Image and annotation visualization

  • Useful utilities (progress bar, timer, …)

  • PyTorch runner with hooking mechanism

  • Various CNN architectures

See the documentation for more features and usage.

Note: MMCV requires Python 3.6+.

Installation

Try and start with

pip install mmcv

or install from source

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Note: If you would like to use opencv-python-headless instead of opencv-python, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmcv-nightly-0.6.1.dev20200624.tar.gz (84.0 kB view details)

Uploaded Source

Built Distributions

File details

Details for the file mmcv-nightly-0.6.1.dev20200624.tar.gz.

File metadata

  • Download URL: mmcv-nightly-0.6.1.dev20200624.tar.gz
  • Upload date:
  • Size: 84.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for mmcv-nightly-0.6.1.dev20200624.tar.gz
Algorithm Hash digest
SHA256 35ce3265c6ef594178bf3ed9b7b01dd6b8222755d7be9674382ae7d9a407fa67
MD5 bcf9b4ab5d05fba68f3037b291512532
BLAKE2b-256 79bedcbda347a67fcecde74273028cbe0a9dfbd947a7dc68bb9a89b00cdb3353

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.6.1.dev20200624-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.6.1.dev20200624-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 370876a7a2787ceab5a8acc54bea26e74bd38362be1ae52a3b18541e5582691b
MD5 cb7fe2a782aa78cc7b9283a834b871d0
BLAKE2b-256 4587fb559aed92168a829a9bee0883e838b583d67a5348e0413620255bad7361

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.6.1.dev20200624-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.6.1.dev20200624-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e425aa34e32150c23a115a5329c5dcfd284692152f1662521c945e312bf0dbdb
MD5 db22119f3051a8a9da61d6eb0752b59c
BLAKE2b-256 64a9ea8cb87dd9e632f494fb8071bc116fdaecf5126dedbe63dab73af5a100e8

See more details on using hashes here.

File details

Details for the file mmcv_nightly-0.6.1.dev20200624-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-0.6.1.dev20200624-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1b2217fdbb7090050da3446d55c0bedf8c17e2891cd25185fc276a307d7281a8
MD5 b2d9701f01dccf22e720296c4f58ed66
BLAKE2b-256 197d8cb4f8da612fb15270722f83a3dceca540890c6e6f12fc3306654153f05e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page