Skip to main content

OpenMMLab Computer Vision Foundation

Project description

https://img.shields.io/pypi/v/mmcv https://github.com/open-mmlab/mmcv/workflows/build/badge.svg https://codecov.io/gh/open-mmlab/mmcv/branch/master/graph/badge.svg https://img.shields.io/github/license/open-mmlab/mmcv.svg

Introduction

MMCV is a foundational python library for computer vision research and supports many research projects in MMLAB, such as MMDetection and MMAction.

It provides the following functionalities.

  • Universal IO APIs

  • Image/Video processing

  • Image and annotation visualization

  • Useful utilities (progress bar, timer, …)

  • PyTorch runner with hooking mechanism

  • Various CNN architectures

  • High-quality implementation of common CUDA ops

See the documentation for more features and usage.

Note: MMCV requires Python 3.6+.

Installation

Try and start with

pip install mmcv

or install from source

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Note: If you would like to use opencv-python-headless instead of opencv-python, e.g., in a minimum container environment or servers without GUI, you can first install it before installing MMCV to skip the installation of opencv-python.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mmcv-nightly-1.0rc0.dev20200630.tar.gz (161.8 kB view details)

Uploaded Source

Built Distributions

File details

Details for the file mmcv-nightly-1.0rc0.dev20200630.tar.gz.

File metadata

  • Download URL: mmcv-nightly-1.0rc0.dev20200630.tar.gz
  • Upload date:
  • Size: 161.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.6.8

File hashes

Hashes for mmcv-nightly-1.0rc0.dev20200630.tar.gz
Algorithm Hash digest
SHA256 080a0072dba75e14af9472f50d3c08d8c9f1833523872cf9687035cbe25c4286
MD5 9396679df5902923bce1c489d992edfe
BLAKE2b-256 6eb3888ef1e0517ce52c178d3f153ca33358e0ca0fdfd5f2d2dc4b12980d0d16

See more details on using hashes here.

File details

Details for the file mmcv_nightly-1.0rc0.dev20200630-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-1.0rc0.dev20200630-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1754cd9bca5b170bbd8bc8eb4fc6451b8e18f4df4949334732c0a69b4db435af
MD5 1e3ed4c8bf4d70d7c90262ba32d8a670
BLAKE2b-256 13dc91e75f0714e92838a3b2338b7b696f7668348ebd91fdea0c7e842d2284d0

See more details on using hashes here.

File details

Details for the file mmcv_nightly-1.0rc0.dev20200630-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-1.0rc0.dev20200630-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 04b85ed448f758b24315c1ac7732632980191cf6c6cece6142d4d248964c0355
MD5 6ebf633c614ad19ff06b537eee0bd304
BLAKE2b-256 8653e1660fed15e07f876e476c9720162e68ac2ba3dc52751c4b4e6b295d533c

See more details on using hashes here.

File details

Details for the file mmcv_nightly-1.0rc0.dev20200630-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mmcv_nightly-1.0rc0.dev20200630-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fca00dd7d3e5754a9298c2c5001f74c8907b05d962fc060f7025b4063466b1d1
MD5 de7c3487a09abdb1844cdf492b889d04
BLAKE2b-256 fe2043eb522053a9de2ec4a383f38d18909520aab8e3b75cd93a50fbfc8cb790

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page