A mock handler for simulating a vector database.
Project description
Mocker DB
This class is a mock handler for simulating a vector database, designed primarily for testing and development scenarios. It offers functionalities such as text embedding, hierarchical navigable small world (HNSW) search, and basic data management within a simulated environment resembling a vector database.
import sys
import numpy as np
sys.path.append('../')
from python_modules.mocker_db import MockerDB, SentenceTransformerEmbedder, MockerSimilaritySearch
Usage examples
The examples contain:
- Basic data insertion and retrieval
- Text embedding and searching
- Advanced filtering and removal
- Testing the HNSW search algorithm
- Simulating database connection and persistence
1. Basic Data Insertion and Retrieval
# Initialization
handler = MockerDB(
# optional
embedder_params = {'model_name_or_path' : 'paraphrase-multilingual-mpnet-base-v2',
'processing_type' : 'batch',
'tbatch_size' : 500},
embedder = SentenceTransformerEmbedder,
## optional/ for similarity search
similarity_search_h = MockerSimilaritySearch,
return_keys_list = [],
search_results_n = 3,
similarity_search_type = 'linear',
similarity_params = {'space':'cosine'},
## optional/ inputs with defaults
file_path = "./mock_persist",
persist = True,
embedder_error_tolerance = 0.0
)
# Initialize empty database
handler.establish_connection()
# Insert Data
values_list = [
{"text": "Sample text 1"},
{"text": "Sample text 2"}
]
handler.insert_values(values_list, "text")
print(f"Items in the database {len(handler.data)}")
# Retrieve Data
handler.filter_keys(subkey="text", subvalue="Sample text 1")
handler.search_database_keys(query='text')
results = handler.get_dict_results(return_keys_list=["text"])
print(results)
.gitattributes: 0%| | 0.00/690 [00:00<?, ?B/s]
1_Pooling/config.json: 0%| | 0.00/190 [00:00<?, ?B/s]
README.md: 0%| | 0.00/4.13k [00:00<?, ?B/s]
config.json: 0%| | 0.00/723 [00:00<?, ?B/s]
config_sentence_transformers.json: 0%| | 0.00/122 [00:00<?, ?B/s]
pytorch_model.bin: 0%| | 0.00/1.11G [00:00<?, ?B/s]
sentence_bert_config.json: 0%| | 0.00/53.0 [00:00<?, ?B/s]
sentencepiece.bpe.model: 0%| | 0.00/5.07M [00:00<?, ?B/s]
special_tokens_map.json: 0%| | 0.00/239 [00:00<?, ?B/s]
tokenizer.json: 0%| | 0.00/9.08M [00:00<?, ?B/s]
tokenizer_config.json: 0%| | 0.00/402 [00:00<?, ?B/s]
modules.json: 0%| | 0.00/229 [00:00<?, ?B/s]
Items in the database 2
[{'text': 'Sample text 1'}]
2. Text Embedding and Searching
ste = SentenceTransformerEmbedder(# optional / adaptor parameters
processing_type = '',
tbatch_size = 500,
max_workers = 2,
# sentence transformer parameters
model_name_or_path = 'paraphrase-multilingual-mpnet-base-v2',)
# Single Text Embedding
query = "Sample query"
embedded_query = ste.embed(query,
# optional
processing_type='')
print(embedded_query[0:50])
[-0.04973586 0.09520268 -0.01219508 0.09253863 -0.02301829 -0.02721018
0.0568395 0.09710983 0.10683874 0.05812277 0.1322755 0.01142832
-0.06957253 0.0698075 -0.05259365 -0.05755996 0.00816183 -0.0083684
-0.00861256 0.01442069 0.01188816 -0.09503672 0.07125735 -0.04827785
0.01473162 0.01084185 -0.1048248 0.07012521 -0.04720647 0.10030048
0.04455933 0.02131893 0.00667914 -0.05259187 0.06822995 -0.09520472
-0.00581363 -0.02451877 -0.00384987 0.02750723 0.06960277 0.2401375
-0.01220019 0.05890937 -0.08468664 0.11379692 -0.03594767 -0.0565297
-0.01621809 0.09546725]
# Batch Text Embedding
queries = ["Sample query", "Sample query 2"]
embedded_query = ste.embed(queries,
# optional
processing_type='batch')
print(embedded_query[0][0:50])
print("---")
print(embedded_query[1][0:50])
[-0.04973584 0.09520271 -0.01219508 0.09253865 -0.0230183 -0.02721017
0.05683954 0.09710982 0.10683876 0.05812274 0.13227552 0.01142829
-0.06957256 0.06980743 -0.05259361 -0.05755996 0.00816183 -0.00836839
-0.00861252 0.01442068 0.01188819 -0.09503672 0.07125732 -0.04827787
0.01473164 0.01084186 -0.1048249 0.07012525 -0.04720649 0.10030047
0.04455935 0.02131895 0.00667912 -0.05259192 0.06822995 -0.09520471
-0.00581363 -0.02451887 -0.00384988 0.02750726 0.06960279 0.2401375
-0.01220022 0.05890937 -0.08468666 0.11379688 -0.03594765 -0.05652964
-0.0162181 0.09546735]
---
[-0.05087024 0.1231768 -0.0139253 0.10524713 -0.07614321 -0.02349629
0.05829773 0.15128359 0.18119803 0.03745934 0.12174664 0.00639838
-0.04045055 0.12758303 -0.06155453 -0.06736137 0.04713943 -0.04134275
-0.12165949 0.0440988 0.01834145 -0.04796624 0.04922185 -0.00641203
0.01420631 -0.03602944 -0.01026761 0.09232258 -0.04927172 0.03985452
0.03566906 0.0833893 0.04922603 -0.09951889 0.0513812 -0.13344644
0.01626778 -0.01189724 0.0059921 0.05663403 0.04282105 0.26432782
-0.01122811 0.07177631 -0.11822144 0.08731946 -0.04965353 0.03697515
0.08965266 0.03107021]
# Search Database
search_results = handler.search_database(query, return_keys_list=["text"])
# Display Results
print(search_results)
[{'text': 'Sample text 1'}]
3. Advanced Filtering and Removal
# Advanced Filtering
filter_criteria = {"text": "Sample text 1"}
handler.filter_database(filter_criteria)
filtered_data = handler.filtered_data
print(f"Filtered data {len(filtered_data)}")
# Data Removal
handler.remove_from_database(filter_criteria)
print(f"Items left in the database {len(handler.data)}")
Filtered data 1
Items left in the database 1
4. Testing the HNSW Search Algorithm
mss = MockerSimilaritySearch(
# optional
search_results_n = 3,
similarity_params = {'space':'cosine'},
similarity_search_type ='linear'
)
# Create embeddings
embeddings = [ste.embed("example1"), ste.embed("example2")]
# Assuming embeddings are pre-calculated and stored in 'embeddings'
data_with_embeddings = {"record1": {"embedding": embeddings[0]}, "record2": {"embedding": embeddings[1]}}
handler.data = data_with_embeddings
# HNSW Search
query_embedding = embeddings[0] # Example query embedding
labels, distances = mss.hnsw_search(query_embedding, np.array(embeddings), k=1)
print(labels, distances)
[0] [4.172325e-07]
5. Simulating Database Connection and Persistence
# Establish Connection
handler.establish_connection()
# Change and Persist Data
handler.insert_values([{"text": "New sample text"}], "text")
handler.save_data()
# Reload Data
handler.establish_connection()
print(f"Items in the database {len(handler.data)}")
Items in the database 2
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mocker_db-0.0.4.tar.gz
(13.6 kB
view details)
Built Distribution
mocker_db-0.0.4-py3-none-any.whl
(10.9 kB
view details)
File details
Details for the file mocker_db-0.0.4.tar.gz
.
File metadata
- Download URL: mocker_db-0.0.4.tar.gz
- Upload date:
- Size: 13.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0fcda00626cde31b0cc8e64ce18d082829f2ebfc04fef375047ff652f125e8bf |
|
MD5 | 975cbd03f64f7394c6bb2ff1a0f0da8b |
|
BLAKE2b-256 | 7797e07d644577ee9445b31d52861e29ffa085706adc2e520adece394759851a |
File details
Details for the file mocker_db-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: mocker_db-0.0.4-py3-none-any.whl
- Upload date:
- Size: 10.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 36fd0e1f0e8d0c8f256a2e7aec0b7f9b2f5fe1b4d19e324c06587ef0a9d05e6d |
|
MD5 | 4257a5b89655a9dbb238be83b93321c0 |
|
BLAKE2b-256 | 24713397f0ee22539ee97fe9c4e54e8c49cacda513c2c4306981a0997aacd4ce |