Skip to main content

A mock handler for simulating a vector database.

Project description

Mocker db

MockerDB is a python module that contains mock vector database like solution built around python dictionary data type. It contains methods necessary to interact with this 'database', embed, search and persist.

from mocker_db import MockerDB, MockerConnector, SentenceTransformerEmbedder

1. Inserting values into the database

MockerDB can be used as ephemeral database where everything is saved in memory, but also can be persisted in one file for the database and another for embeddings storage.

Embedder is set to sentence_transformer by default and processed locally, custom embedders that connect to an api or use other open source models could be used as long as they have the same interface.

# Initialization
handler = MockerDB(
    # optional
    embedder_params = {'model_name_or_path' : 'paraphrase-multilingual-mpnet-base-v2',
                        'processing_type' : 'batch',
                        'tbatch_size' : 500},
    similarity_search_type = 'linear_torch',
    use_embedder = True,
    embedder = SentenceTransformerEmbedder,
    persist = True
)
# Initialize empty database
handler.establish_connection(
    # optional for persist
    file_path = "./mock_persist",
    embs_file_path = "./mock_embs_persist",
)
sentences = [
    "The cat slept.",
    "It rained today.",
    "She smiled gently.",
    "Books hold knowledge.",
    "The sun set behind the mountains, casting a golden glow over the valley.",
    "He quickly realized that time was slipping away, and he needed to act fast.",
    "The concert was an unforgettable experience, filled with laughter and joy.",
    "Despite the challenges, they managed to build a beautiful home together.",
    "As the wind howled through the ancient trees, scattering leaves and whispering secrets of the forest, she stood there, gazing up at the endless expanse of stars, feeling both infinitely small and profoundly connected to the universe.",
    "While the project seemed daunting at first, requiring countless hours of research, planning, and execution, the team worked tirelessly, motivated by their shared goal of creating something truly remarkable and innovative in their field.",
    "In the bustling city streets, amidst the constant hum of traffic and chatter, he found himself contemplating life's mysteries, pondering the choices that had brought him to this very moment and wondering where the path ahead would lead.",
    "The conference was a gathering of minds from around the globe, each participant bringing their unique perspectives and insights to the table, fostering a vibrant exchange of ideas that would shape the future of their respective fields for years to come."
]

# Insert Data
values_list = [
    {'text' : t, 'n_words' : len(t.split())} for t in sentences
]
handler.insert_values(values_list, "text")
print(f"Items in the database {len(handler.data)}")
Items in the database 12

2. Searching and retrieving values from the database

There are multiple options for search which could be used together or separately:

  • simple filter

  • filter with keywords

  • llm filter

  • search based on similarity

  • get all keys

results = handler.search_database(
    query = "cat",
    filter_criteria = {
        "n_words" : 3,
    }
)
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'text': 'The cat slept....', 'n_words': '3...'}, {'text': 'She smiled gently....', 'n_words': '3...'}, {'text': 'It rained today....', 'n_words': '3...'}, {'text': 'Books hold knowledge....', 'n_words': '3...'}]
  • get all keys with keywords search
results = handler.search_database(
    # when keyword key is provided filter is used to pass keywords
    filter_criteria = {
        "text" : ["sun"],
    },
    keyword_check_keys = ['text'],
    # percentage of filter keyword allowed to be different
    keyword_check_cutoff = 1,
    return_keys_list=['text']
)
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'text': 'The sun set behind the mountai...'}]
  • get all key - n_words
results = handler.search_database(
    query = "cat",
    filter_criteria = {
        "n_words" : 3,
    },
    return_keys_list=["-n_words"])
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'text': 'The cat slept....'}, {'text': 'She smiled gently....'}, {'text': 'It rained today....'}, {'text': 'Books hold knowledge....'}]
  • get all keys + distance
results = handler.search_database(
    query = "cat slept",
    filter_criteria = {
        "n_words" : 3,
    },
    return_keys_list=["+&distance"]
)
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'text': 'The cat slept....', 'n_words': '3...', '&distance': '0.9757655658500587...'}, {'text': 'She smiled gently....', 'n_words': '3...', '&distance': '0.255370996400475...'}, {'text': 'It rained today....', 'n_words': '3...', '&distance': '0.049663160920329866...'}, {'text': 'Books hold knowledge....', 'n_words': '3...', '&distance': '0.011214848789777708...'}]
  • get distance
results = handler.search_database(
    query = "cat slept",
    filter_criteria = {
        "n_words" : 3,
    },
    return_keys_list=["&distance"]
)
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'&distance': '0.9757655658500587...'}, {'&distance': '0.255370996400475...'}, {'&distance': '0.049663160920329866...'}, {'&distance': '0.011214848789777708...'}]
  • get all keys + embeddings
results = handler.search_database(
    query = "cat slept",
    filter_criteria = {
        "n_words" : 3,
    },
    return_keys_list=["+embedding"]
)
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'text': 'The cat slept....', 'n_words': '3...', 'embedding': '[-3.86438631e-02  1.23167999e-...'}, {'text': 'She smiled gently....', 'n_words': '3...', 'embedding': '[-2.46711988e-02  2.37020120e-...'}, {'text': 'It rained today....', 'n_words': '3...', 'embedding': '[-1.35887757e-01 -2.52719939e-...'}, {'text': 'Books hold knowledge....', 'n_words': '3...', 'embedding': '[ 6.20862879e-02  1.13785893e-...'}]
  • get embeddings
results = handler.search_database(
    query = "cat slept",
    filter_criteria = {
        "n_words" : 3,
    },
    return_keys_list=["embedding"]
)
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'embedding': '[-3.86438631e-02  1.23167999e-...'}, {'embedding': '[-2.46711988e-02  2.37020120e-...'}, {'embedding': '[-1.35887757e-01 -2.52719939e-...'}, {'embedding': '[ 6.20862879e-02  1.13785893e-...'}]
  • get embeddings and embedded field
results = handler.search_database(
    query = "cat slept",
    filter_criteria = {
        "n_words" : 3,
    },
    return_keys_list=["embedding", "+&embedded_field"]
)
print([{k: str(v)[:30] + "..." for k, v in result.items()} for result in results])
[{'&embedded_field': 'text...', 'embedding': '[-3.86438631e-02  1.23167999e-...'}, {'&embedded_field': 'text...', 'embedding': '[-2.46711988e-02  2.37020120e-...'}, {'&embedded_field': 'text...', 'embedding': '[-1.35887757e-01 -2.52719939e-...'}, {'&embedded_field': 'text...', 'embedding': '[ 6.20862879e-02  1.13785893e-...'}]

3. Removing values from the database

print(f"Items in the database {len(handler.data)}")
handler.remove_from_database(filter_criteria = {"n_words" : 11})
print(f"Items left in the database {len(handler.data)}")
Items in the database 12
Items left in the database 10

4 Embeding text

results = handler.embed_texts(
    texts = [
    "Short. Variation 1: Short.",
    "Another medium-length example, aiming to test the variability in processing different lengths of text inputs. Variation 2: processing lengths medium-length example, in inputs. to variability aiming test of text different the Another"
  ]
)

print(str(results)[0:300] + "...")
{'embeddings': [[0.04973424971103668, -0.43570247292518616, -0.014545125886797905, -0.03648979589343071, -0.04165348783135414, -0.04544278606772423, -0.07025150209665298, 0.10043243318796158, -0.20846229791641235, 0.15596869587898254, 0.11489829421043396, -0.13442179560661316, -0.02425091527402401, ...

5. Using MockerDB API

Remote Mocker can be used via very similar methods to the local one.

# Initialization
handler = MockerDB(
    skip_post_init=True
)
# Initialize empty database
handler.establish_connection(
     # optional for connecting to api
    connection_details = {
        'base_url' : "http://localhost:8000/mocker-db"
    }
)
sentences = [
    "The cat slept.",
    "It rained today.",
    "She smiled gently.",
    "Books hold knowledge.",
    "The sun set behind the mountains, casting a golden glow over the valley.",
    "He quickly realized that time was slipping away, and he needed to act fast.",
    "The concert was an unforgettable experience, filled with laughter and joy.",
    "Despite the challenges, they managed to build a beautiful home together.",
    "As the wind howled through the ancient trees, scattering leaves and whispering secrets of the forest, she stood there, gazing up at the endless expanse of stars, feeling both infinitely small and profoundly connected to the universe.",
    "While the project seemed daunting at first, requiring countless hours of research, planning, and execution, the team worked tirelessly, motivated by their shared goal of creating something truly remarkable and innovative in their field.",
    "In the bustling city streets, amidst the constant hum of traffic and chatter, he found himself contemplating life's mysteries, pondering the choices that had brought him to this very moment and wondering where the path ahead would lead.",
    "The conference was a gathering of minds from around the globe, each participant bringing their unique perspectives and insights to the table, fostering a vibrant exchange of ideas that would shape the future of their respective fields for years to come."
]

# Insert Data
values_list = [
    {'text' : t, 'n_words' : len(t.split())} for t in sentences
]
handler.insert_values(values_list, "text")
HTTP Request: POST http://localhost:8000/mocker-db/insert "HTTP/1.1 200 OK"





{'status': 'success', 'message': ''}

MockerAPI has multiple handlers stored in memory at a time, they can be displayed with number of items and memory estimate.

handler.show_handlers()
HTTP Request: GET http://localhost:8000/mocker-db/active_handlers "HTTP/1.1 200 OK"





{'results': [{'handler': 'default',
   'items': 14,
   'memory_usage': 1.4558258056640625}],
 'status': 'success',
 'message': '',
 'handlers': ['default'],
 'items': [14],
 'memory_usage': [1.4558258056640625]}
results = handler.search_database(
    query = "cat",
    filter_criteria = {
        "n_words" : 3,
    }
)

results
HTTP Request: POST http://localhost:8000/mocker-db/search "HTTP/1.1 200 OK"





{'status': 'success',
 'message': '',
 'handler': 'default',
 'results': [{'text': 'The cat slept.', 'n_words': 3},
  {'text': 'Books hold knowledge.', 'n_words': 3},
  {'text': 'It rained today.', 'n_words': 3},
  {'text': 'She smiled gently.', 'n_words': 3}]}
results = handler.embed_texts(
    texts = [
    "Short. Variation 1: Short.",
    "Another medium-length example, aiming to test the variability in processing different lengths of text inputs. Variation 2: processing lengths medium-length example, in inputs. to variability aiming test of text different the Another"
  ],
    # optional
    embedding_model = "intfloat/multilingual-e5-base"
)

print(str(results)[0:500] + "...")
HTTP Request: POST http://localhost:8000/mocker-db/embed "HTTP/1.1 200 OK"


{'status': 'success', 'message': '', 'handler': 'cache_mocker_intfloat_multilingual-e5-base', 'embedding_model': 'intfloat/multilingual-e5-base', 'embeddings': [[-0.021023565903306007, 0.03461984172463417, -0.01310338918119669, 0.03071131743490696, 0.023395607247948647, -0.04054545238614082, -0.015805143862962723, -0.02682858146727085, 0.01583343744277954, 0.01763748936355114, 0.0008703064522705972, -0.011133715510368347, 0.11296682059764862, 0.015158131718635559, -0.0466904453933239, -0.0481428...
handler.show_handlers()
HTTP Request: GET http://localhost:8000/mocker-db/active_handlers "HTTP/1.1 200 OK"





{'results': [{'handler': 'default',
   'items': 14,
   'memory_usage': 1.4564743041992188},
  {'handler': 'cache_mocker_intfloat_multilingual-e5-base',
   'items': 2,
   'memory_usage': 1.3639755249023438}],
 'status': 'success',
 'message': '',
 'handlers': ['default', 'cache_mocker_intfloat_multilingual-e5-base'],
 'items': [14, 2],
 'memory_usage': [1.4564743041992188, 1.3639755249023438]}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mocker_db-0.2.6.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

mocker_db-0.2.6-py3-none-any.whl (1.1 MB view details)

Uploaded Python 3

File details

Details for the file mocker_db-0.2.6.tar.gz.

File metadata

  • Download URL: mocker_db-0.2.6.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.15

File hashes

Hashes for mocker_db-0.2.6.tar.gz
Algorithm Hash digest
SHA256 a2ba33dc9323fd544f3817c569c4195489438aa4f7bde126b60b0ac1ca0bd91d
MD5 e71af17cce2c879f3d24ebe1b1de5bca
BLAKE2b-256 dcc6b4a763c4ab0373fae4f85a6a3b0e79aabb3a60a7752d1aacc280f4f492bf

See more details on using hashes here.

File details

Details for the file mocker_db-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: mocker_db-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.15

File hashes

Hashes for mocker_db-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 21dc38b4125f5679cf5b1605772310975f8ac46b653d676e114815443a4cdc9e
MD5 5a4265d04a8031d4446a7d60a26c4833
BLAKE2b-256 30188c24e7c86a7940d7fcf1453ef511e9e17c37f152ccf1979e6808d2e845d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page