Skip to main content

This package contains collection of models

Project description

Model_X

Model_X package is a collection of different NLP architecture models.

Implementation

1. BiLSTM+BiGRU Architectures

a. BiLSTMGRUSpatialDropout1D

from model_X.bilstm_architectures import *
from model_X.dense_architectures import DenseLayerModel
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model

input_shape = (100,)
model_input = Input(shape=input_shape)
bilstm_layers = BiLSTMGRUSpatialDropout1D(10, 100)(model_input)
dense_layers = DenseLayerModel()(bilstm_layers)
output = Dense(3, activation='softmax')(dense_layers)
full_model = Model(inputs=model_input, outputs=output)
print(full_model.summary())

b. BiLSTMGRUSelfAttention

from model_X.bilstm_architectures import *
from model_X.dense_architectures import DenseLayerModel
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model

input_shape = (100,)
model_input = Input(shape=input_shape)
bilstm_layers = BiLSTMGRUSelfAttention(10, 100)(model_input)
dense_layers = DenseLayerModel()(bilstm_layers)
output = Dense(3, activation='softmax')(dense_layers)
full_model = Model(inputs=model_input, outputs=output)
print(full_model.summary())

c. BiLSTMGRUMultiHeadAttention

from model_X.bilstm_architectures import *
from model_X.dense_architectures import DenseLayerModel
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model

input_shape = (100,)
model_input = Input(shape=input_shape)
bilstm_layers = BiLSTMGRUMultiHeadAttention(10, 100)(model_input)
dense_layers = DenseLayerModel()(bilstm_layers)
output = Dense(3, activation='softmax')(dense_layers)
full_model = Model(inputs=model_input, outputs=output)
print(full_model.summary())

d. SplitBiLSTMGRUSpatialDropout1D

from model_X.bilstm_architectures import *
from model_X.dense_architectures import DenseLayerModel
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model

input_shape = (100,)
model_input = Input(shape=input_shape)
bilstm_layers = SplitBiLSTMGRUSpatialDropout1D(10, 100)(model_input)
dense_layers = DenseLayerModel()(bilstm_layers)
output = Dense(3, activation='softmax')(dense_layers)
full_model = Model(inputs=model_input, outputs=output)
print(full_model.summary())

e. SplitBiLSTMGRU

from model_X.bilstm_architectures import *
from model_X.dense_architectures import DenseLayerModel
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model

input_shape = (100,)
model_input = Input(shape=input_shape)
bilstm_layers = SplitBiLSTMGRU(10, 100)(model_input)
dense_layers = DenseLayerModel()(bilstm_layers)
output = Dense(3, activation='softmax')(dense_layers)
full_model = Model(inputs=model_input, outputs=output)
print(full_model.summary())

2. Dense Architectures

a. DenseLayerModel

from model_X.dense_architectures import DenseLayerModel
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model

input_shape = (100,)
model_input = Input(shape=input_shape)
dense_layers = DenseLayerModel()(model_input)
output = Dense(3, activation='softmax')(dense_layers)
full_model = Model(inputs=model_input, outputs=output)
print(full_model.summary())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

model_X-0.1.3.tar.gz (9.2 kB view hashes)

Uploaded Source

Built Distribution

model_X-0.1.3-py3-none-any.whl (9.7 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page