Skip to main content

base models, metadata, and how to dump them to json|yaml

Project description

Model-lib - pydantic base models with convenient dump methods

Installation

pip install 'model-lib[full]'

Model-lib tutorial: What classes to use as base classes, how to serialize them, and add metadata

  • A library built on top of pydantic
  • Both pydantic v1 and v2 are supported
  • The models: Event and Entity are subclassing pydantic.BaseModel
    • Event is immutable
    • Entity is mutable
    • The specific configuration are:
      • Automatic registering for dumping to the various formats
      • Support different serializers for yaml/json/pretty_json/toml
      • use_enum_values
      • see model_base for details
  • Use dump(model|payload, format) -> str
    • if using an Event|Entity it should "just-work"
    • Alternatively, support custom dumping with register_dumper(instance_type: Type[T],dump_call: DumpCall) (see example below)
  • Use parse_payload(payload, format) to parse to a dict or list
    • bytes
    • str
    • pathlib.Path (format not necessary if file has extension: .yaml|.yml|json|toml)
    • dict|list will be returned directly
    • supports register_parser for adding e.g., a parser for KafkaMessage
  • Use parse_model(payload, t=Type, format) to parse and create a model
    • t not necessary if class name stored in metadata.model_name (see example below)
    • format not necessary if parsing from a file with extension
from datetime import datetime

from freezegun import freeze_time
from pydantic import Field

from model_lib import (
    Entity,
    Event,
    dump,
    dump_with_metadata,
    parse_model,
    FileFormat,
    register_dumper,
)
from model_lib.serialize.parse import register_parser, parse_payload

dump_formats = list(FileFormat)
expected_dump_formats: list[str] = [
    "json",
    "pretty_json",
    "yaml",
    "yml",
    "json_pydantic",
    "pydantic_json",
    "toml",
    "toml_compact",
]
missing_dump_formats = set(FileFormat) - set(expected_dump_formats)
assert not missing_dump_formats, f"found missing dump formats: {missing_dump_formats}"


class Birthday(Event):
    """
    >>> birthday = Birthday()
    """

    date: datetime = Field(default_factory=datetime.utcnow)


class Person(Entity):
    """
    >>> person = Person(name="espen", age=99)
    >>> person.age += 1 # mutable
    >>> person.age
    100
    """

    name: str
    age: int


_pretty_person = """{
  "age": 99,
  "name": "espen"
}"""


def test_show_dumping():
    with freeze_time("2020-01-01"):
        birthday = Birthday(date=datetime.utcnow())
        # can dump non-primitives e.g., datetime
        assert dump(birthday, "json") == '{"date":"2020-01-01T00:00:00"}'
    person = Person(name="espen", age=99)
    assert dump(person, "yaml") == "name: espen
age: 99
"
    assert dump(person, "pretty_json") == _pretty_person


_metadata_dump = """model:
  name: espen
  age: 99
metadata:
  model_name: Person
"""


def test_show_parsing(tmp_path):
    path_json = tmp_path / "example.json"
    path_json.write_text(_pretty_person)
    person = Person(name="espen", age=99)
    assert parse_model(path_json, t=Person) == person
    assert dump_with_metadata(person, format="yaml") == _metadata_dump
    path_yaml = tmp_path / "example.yaml"
    path_yaml.write_text(_metadata_dump)
    assert parse_model(path_yaml) == person  # metadata is used to find the class


class CustomDumping:
    def __init__(self, first_name: str, last_name: str):
        self.first_name = first_name
        self.last_name = last_name

    def __eq__(self, other):
        if isinstance(other, CustomDumping):
            return self.__dict__ == other.__dict__
        return super().__eq__(other)


def custom_dump(custom: CustomDumping) -> dict:
    return dict(full_name=f"{custom.first_name} {custom.last_name}")


register_dumper(CustomDumping, custom_dump)


class CustomKafkaPayload:
    def __init__(self, body: str, topic: str):
        self.topic = topic
        self.body = body


def custom_parse_kafka(payload: CustomKafkaPayload, format: str) -> dict | list: # use Union[dict, list] if py3.9
    return parse_payload(payload.body, format)


register_parser(CustomKafkaPayload, custom_parse_kafka)


def test_custom_dump():
    instance = CustomDumping("Espen", "Python")
    assert dump(instance, "json") == '{"full_name":"Espen Python"}'
    payload = CustomKafkaPayload(
        body='{"first_name": "Espen", "last_name": "Python"}', topic="some-topic"
    )
    assert parse_model(payload, t=CustomDumping) == instance

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

model_lib-0.0.29a9-py3-none-any.whl (26.2 kB view details)

Uploaded Python 3

File details

Details for the file model_lib-0.0.29a9-py3-none-any.whl.

File metadata

  • Download URL: model_lib-0.0.29a9-py3-none-any.whl
  • Upload date:
  • Size: 26.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for model_lib-0.0.29a9-py3-none-any.whl
Algorithm Hash digest
SHA256 a4c19a94e1e694f1b54d19043be23ea96299960bc0ffe8672522092ea0e80eb7
MD5 dec6bb9344464d0dbf28f5b85e36ca39
BLAKE2b-256 7016291c6a1b447cc39a2a9ef7d00a8666ca38cff279bac5ccb78b6c7b5132cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page