Moiety Modeling Implementation
Project description
moiety_modeling package provides facilities for moiety model representation, model optimization and model selection.
Citation
Please cite the GitHub repository until our manuscript is accepted for publication: https://github.com/MoseleyBioinformaticsLab/moiety_modeling.git
Installation
‘moiety_modeling’ runs under Python 3.6+ and is available through python3-pip. Install via pip or clone the git repo and install the following depencies and you are ready to go!
Install on Linux
Pip installation
python3 -m pip install moiety-modeling
GitHub Package installation
Make sure you have git installed:
git clone https://github.com/MoseleyBioinformaticsLab/moiety_modeling.git
Dependencies
‘moiety_modeling’ requires the following Python libraries:
docopt for creating the command-line interface.
jsonpickle for saving Python objects in a JSON serializable form and outputting to a file.
numpy and matplotlib for visualization of optimized results.
scipy for application of optimization methods.
SAGA-optimize for parameters optimization.
Quickstart
Using moiety_modeling to optimize parameters of moiety model.
python3 -m moiety_modeling modeling --models=<model_jsonfile> --datasets=<dataset_jsonfile> --optimizations=<optimizationSetting_json> --repetition=100 --split --multiprocess --energyFunction=logDifference
Using moiety_modeling to analyze optimized results and select the optimal model.
python3 -m moiety_modeling analyze optimizations --a <optimizationPaths_txtfile>
python3 -m moiety_modeling analyze rank <analysisPaths_txtfile> --rankCriteria=AICc
Using moiety_modeling to visualize the optimzed results.
python3 -m moiety_modeling plot moiety <analysisResults_jsonfile>
License
Made available under the terms of The modified Clear BSD License. See full license in LICENSE.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.