Skip to main content

Monk Classification's Gluoncv backend

Project description

List of all available functions and associated tutorials




Available backend frameworks

a) Mxnet Gluon - version 1.5.1
b) Pytorch     - version 1.2.0
c) Keras       - version 2.2.5 (tf - 1.12.0)



Available Transfer Learning Models

monk name Original Name in Keras Original Name in Pytorch Original Name in MXNet
alexnet - alexnet AlexNet
darknet - - Darnet53
densenet121 DenseNet121 densenet121 DenseNet121
densenet161 - densenet161 DenseNet161
densenet169 DenseNet169 densenet169 DenseNet169
densenet201 DenseNet201 densenet201 DenseNet201
googlenet - googlenet -
inception_v3 InceptionV3 inception_v3 InceptionV3
inception_resnet_v2 InceptionResNetV2 - -
mnasnet0_5 - mnasnet0_5 -
mnasnet0_75 - mnasnet0_75 -
mnasnet1_0 - mnasnet1_0 -
mnasnet1_3 - mnasnet1_3 -
nasnet_mobile NASNetMobile - -
nasnet_large NASNetLarge - -
mobilenet MobileNet - MobileNet1.0
mobilenet1.0_int8 - - MobileNet1.0_int8
mobilenet0.75 - - MobileNet0.75
mobilenet0.5 - - MobileNet0.5
mobilenet0.25 - - MobileNet0.25
mobilenetv2 MobileNetV2 mobilenet_v2 MobileNetV2_1.0
mobilenetv2_0.75 - - MobileNetV2_0.75
mobilenetv2_0.5 - - MobileNetV2_0.5
mobilenetv2_0.25 - - MobileNetV2_0.25
mobilenetv3_large - - MobileNetV3_Large
mobilenetv3_smalle - - MobileNetV3_Small
resnet18_v1 - resnet18 ResNet18_v1
resnet34_v1 - resnet34 ResNet34_v1
resnet50_v1 ResNet50 resnet50 ResNet50_v1
resnet101_v1 ResNet101 resnet101 ResNet101_v1
resnet152_v1 ResNet152 resnet152 ResNet152_v1
resnet18_v2 ResNet18_v2
resnet34_v2 ResNet34_v2
resnet50_v2 ResNet50V2 - ResNet50_v2
resnet101_v2 ResNet101V2 - ResNet101_v2
resnet152_v2 ResNet152V2 - ResNet152_v2
resnext50_32x4d - resnext50_32x4d ResNext50_32x4d
resnext101_32x8d - resnext101_32x8d ResNext101_32x4d
resnext101_64x4d - - ResNext101_64x4d
se_resnext50_32x4d - - SE_ResNext50_32x4d
se_resnext101_32x4d - - SE_ResNext101_32x4d
se_resnext101_64x4d - - SE_ResNext101_64x4d
shufflenet_v2_x0_5 - shufflenet_v2_x0_5 -
shufflenet_v2_x1_0 - shufflenet_v2_x1_0 -
shufflenet_v2_x1_5 - shufflenet_v2_x1_5 -
shufflenet_v2_x2_0 - shufflenet_v2_x2_0 -
squeezenet1_0 - squeezenet1_0 SqueezeNet1.0
squeezenet1_1 - squeezenet1_1 SqueezeNet1.1
senet_154 - - SENet_154
vgg11 - vgg11 VGG11
vgg11_bn - vgg11_bn VGG11_bn
vgg13 - vgg13 VGG13
vgg13_bn - vgg13_bn VGG13_bn
vgg16 VGG16 vgg16 VGG16
vgg16_bn - vgg16_bn VGG16_bn
vgg19 VGG19 vgg19 VGG19
vgg19_bn - vgg19_bn VGG19_bn
wide_resnet50_2 - wide_resnet50_2 -
wide_resnet101_2 - wide_resnet101_2 -
xception Xception - Xception



Available Custom Network Layers

Name in Monk Name in Keras backend Name in pytorch backend Name in mxnet backed
fully_connected Dense Linear Dense
Dropout Dropout Dropout Dropout
Flatten Flatten Flatten Flatten
convolution1d Conv1D Conv1d Conv1D
convolution Conv2D Conv2d Conv2D
convolution3d Conv3D Conv3d Conv3D
transposed_convolution1d - ConvTranspose1d Conv1DTranspose
transposed_convolution Conv2DTranspose ConvTranspose2d Conv2DTranspose
transposed_convolution3d Conv3DTranspose ConvTranspose3d Conv3DTranspose
max_pooling1d MaxPooling1D MaxPool1d MaxPool1D
max_pooling MaxPooling2D MaxPool2d MaxPool2D
max_pooling3d MaxPooling3D MaxPool3d MaxPool3D
average_pooling1d AveragePooling1D AvgPool1d AvgPool1D
average_pooling AveragePooling2D AvgPool2d AvgPool2D
average_pooling3d AveragePooling3D AvgPool3d AvgPool3D
global_max_pooling1d GlobalMaxPooling1D AdaptiveMaxPool1d (With size = 1) GlobalMaxPool1D
global_max_pooling GlobalMaxPooling2D AdaptiveMaxPool2d (With size = 1) GlobalMaxPool2D
global_max_pooling3d GlobalMaxPooling3D AdaptiveMaxPool3d (With size = 1) GlobalMaxPool3D
global_average_pooling1d GlobalAveragePooling1D AdaptiveAvgPool1d (With size = 1) GlobalAvgPool1D
global_average_pooling GlobalAveragePooling2D AdaptiveAvgPool2d (With size = 1) GlobalAvgPool2D
global_average_pooling3d GlobalAveragePooling3D AdaptiveAvgPool3d (With size = 1) GlobalAvgPool3D
add Add Add Add
concatenate Concatenate Concatenate Concatenate
batchnorm BatchNormalization BatchNorm1d BatchNorm
batchnorm - BatchNorm2d -
batchnorm - BatchNorm3d -
instancenorm - InstanceNorm1d InstanceNorm
instancenorm - InstanceNorm2d -
instancenorm - InstanceNorm3d -
layernorm - LayerNorm LayerNorm
identity activation.linear Identity Identity



Available Custom Network Activation Functions

Name in Monk Original name in Keras backend Original name in pytorch backend Original name in mxnet backend
relu relu ReLU Activation('relu')
sigmoid sigmoid Sigmoid Activation('sigmoid')
Tanh Shrink tanh TanH Activation('tanh')
softplus softplus Softplus Activation('softrelu')
softsign softsign Softsign Activation('softsign')
elu elu ELU ELU
gelu - - GELU
prelu PReLU PReLU PReLU
selu selu SELU SELU
swish - - Swish
leakyrelu LeakyReLU LeakyReLU LeakyReLU
hardshrink - HardShrink -
hardtanh - HardTanh -
logsigmoid - LogSigmoid -
relu6 - ReLU6 -
rrelu - RReLU -
celu - CELU -
softshrink - Softshrink -
tanhshrink - Tanhshrink -
threshold - Threshold -
softmin - Softmin -
softmax - Softmax -
logsoftmax - LogSoftmax -
hardsigmoid hard_sigmoid - -
thresholded_relu ThresholdedReLU - -



Available Optimizers

Name in Monk Original Name in Keras backend Original Name in pytorch backend Original Name in mxnet backend
optimizer_adadelta Adadelta Adadelta AdaDelta
optimizer_adagrad Adagrad Adagrad AdaGrad
optimizer_adam Adam Adam Adam
optimizer_adamax Adamax Adamax Adamax
optimizer_nesterov_sgd SGD (With nesterov) SGD (With nesterov) NAG
optimizer_nesterov_adam Nadam - Nadam
optimizer_rmsprop RMSprop RMSprop RMSProp
optimizer_momentum_rmsprop - RMSprop (With momentum) RMSprop (With momentum)
optimizer_sgd SGD SGD SGD
optimizer_signum - - Signum
optimizer_adamw - AdamW -



Available Loss functions

Name in Monk Original Name in keras backend Original Name in pytorch backend Original Name in mxnet backend
loss_l2 mean_squared_error MSELoss L2Loss
loss_l1 mean_absolute_error L1Loss L1Loss
loss_squared_hinge squared_hinge SoftMarginLoss (not exactly) SquaredHingeLoss
loss_hinge hinge HingeEmbeddingLoss HingeLoss
loss_huber huber_loss SmoothL1Loss HuberLoss
loss_softmax_crossentropy - CrossEntropyLoss SoftmaxCrossEntropyLoss
loss_crossentropy categorical_crossentropy CrossEntropyLoss SoftmaxCrossEntropyLoss
loss_multimargin categorical_hinge MultiMarginLoss -
loss_multilabel_margin - MultiLabelMarginLoss -
loss_binary_crossentropy binary_crossentropy BCELoss -
loss_sigmoid_binary_crossentropy - BCEWithLogitsLoss SigmoidBinaryCrossEntropyLoss
loss_kldiv kullback_leibler_divergence KLDivLoss KLDivLoss
loss_poison_nll - PoissonNLLLoss PoissonNLLLoss



Available network blocks

Block Name in Monk
Resnet V1 Block With Downsampling resnet_v1_block
Resnet V1 Block Without Downsampling resnet_v1_block
Resnet V2 Block With Downsampling resnet_v2_block
Resnet V2 Block Without Downsampling resnet_v2_block
Resnet V1 Bottleneck Block With Downsampling resnet_v1_bottleneck_block
Resnet V1 Bottleneck Block Without Downsampling resnet_v1_bottleneck_block
Resnet V2 Bottleneck Block With Downsampling resnet_v2_bottleneck_block
Resnet V2 Bottleneck Block Without Downsampling resnet_v2_bottleneck_block
Resnext Block With Downsampling resnext_block
Resnext Block Without Downsampling resnext_block
Mobilenet V2 Linear BottleNeck Block mobilenet_v2_linear_block
Mobilenet V2 Inverted Linear BottleNeck Block mobilenet_v2_inverted_linear_block
Squeezenet Fire Block squeezenet_fire_block
Densenet Dense Block densenet_dense_block
Inception A Block inception_a_block
Inception B Block inception_b_block
Inception C Block inception_c_block
Inception D Block inception_d_block
Inception E Block inception_e_block

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_cls_test1-0.0.1.tar.gz (6.3 kB view details)

Uploaded Source

Built Distribution

monk_cls_test1-0.0.1-py3-none-any.whl (8.5 kB view details)

Uploaded Python 3

File details

Details for the file monk_cls_test1-0.0.1.tar.gz.

File metadata

  • Download URL: monk_cls_test1-0.0.1.tar.gz
  • Upload date:
  • Size: 6.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cls_test1-0.0.1.tar.gz
Algorithm Hash digest
SHA256 fa2bf9f60c282b9a808d026eef963079bfb9a131477f92685617b7d9b7f05508
MD5 d9f1f553df0a1d6d43c084bc8d788462
BLAKE2b-256 393b460f3ebae08c68d8fb7f6414d1c4d9eaf492abededae41a018ad2247457e

See more details on using hashes here.

Provenance

File details

Details for the file monk_cls_test1-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: monk_cls_test1-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 8.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9

File hashes

Hashes for monk_cls_test1-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 16fe96f631e2298a3a22eb637ae92a4a61b00feb9030d9f1f100ad778d6268a2
MD5 35aacf8aae4820054ada1a4df330c757
BLAKE2b-256 5256bffe0b14c3eb2f3242c35982c7b85c8876b1e3ebd4ef772c00f64a4d2c68

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page