Project description
List of all available functions and associated tutorials
Available backend frameworks
a) Mxnet Gluon - version 1.5.1
b) Pytorch - version 1.2.0
c) Keras - version 2.2.5 (tf - 1.12.0)
Available Transfer Learning Models
monk name |
Original Name in Keras |
Original Name in Pytorch |
Original Name in MXNet |
alexnet |
- |
alexnet |
AlexNet |
darknet |
- |
- |
Darnet53 |
densenet121 |
DenseNet121 |
densenet121 |
DenseNet121 |
densenet161 |
- |
densenet161 |
DenseNet161 |
densenet169 |
DenseNet169 |
densenet169 |
DenseNet169 |
densenet201 |
DenseNet201 |
densenet201 |
DenseNet201 |
googlenet |
- |
googlenet |
- |
inception_v3 |
InceptionV3 |
inception_v3 |
InceptionV3 |
inception_resnet_v2 |
InceptionResNetV2 |
- |
- |
mnasnet0_5 |
- |
mnasnet0_5 |
- |
mnasnet0_75 |
- |
mnasnet0_75 |
- |
mnasnet1_0 |
- |
mnasnet1_0 |
- |
mnasnet1_3 |
- |
mnasnet1_3 |
- |
nasnet_mobile |
NASNetMobile |
- |
- |
nasnet_large |
NASNetLarge |
- |
- |
mobilenet |
MobileNet |
- |
MobileNet1.0 |
mobilenet1.0_int8 |
- |
- |
MobileNet1.0_int8 |
mobilenet0.75 |
- |
- |
MobileNet0.75 |
mobilenet0.5 |
- |
- |
MobileNet0.5 |
mobilenet0.25 |
- |
- |
MobileNet0.25 |
mobilenetv2 |
MobileNetV2 |
mobilenet_v2 |
MobileNetV2_1.0 |
mobilenetv2_0.75 |
- |
- |
MobileNetV2_0.75 |
mobilenetv2_0.5 |
- |
- |
MobileNetV2_0.5 |
mobilenetv2_0.25 |
- |
- |
MobileNetV2_0.25 |
mobilenetv3_large |
- |
- |
MobileNetV3_Large |
mobilenetv3_smalle |
- |
- |
MobileNetV3_Small |
resnet18_v1 |
- |
resnet18 |
ResNet18_v1 |
resnet34_v1 |
- |
resnet34 |
ResNet34_v1 |
resnet50_v1 |
ResNet50 |
resnet50 |
ResNet50_v1 |
resnet101_v1 |
ResNet101 |
resnet101 |
ResNet101_v1 |
resnet152_v1 |
ResNet152 |
resnet152 |
ResNet152_v1 |
resnet18_v2 |
|
|
ResNet18_v2 |
resnet34_v2 |
|
|
ResNet34_v2 |
resnet50_v2 |
ResNet50V2 |
- |
ResNet50_v2 |
resnet101_v2 |
ResNet101V2 |
- |
ResNet101_v2 |
resnet152_v2 |
ResNet152V2 |
- |
ResNet152_v2 |
resnext50_32x4d |
- |
resnext50_32x4d |
ResNext50_32x4d |
resnext101_32x8d |
- |
resnext101_32x8d |
ResNext101_32x4d |
resnext101_64x4d |
- |
- |
ResNext101_64x4d |
se_resnext50_32x4d |
- |
- |
SE_ResNext50_32x4d |
se_resnext101_32x4d |
- |
- |
SE_ResNext101_32x4d |
se_resnext101_64x4d |
- |
- |
SE_ResNext101_64x4d |
shufflenet_v2_x0_5 |
- |
shufflenet_v2_x0_5 |
- |
shufflenet_v2_x1_0 |
- |
shufflenet_v2_x1_0 |
- |
shufflenet_v2_x1_5 |
- |
shufflenet_v2_x1_5 |
- |
shufflenet_v2_x2_0 |
- |
shufflenet_v2_x2_0 |
- |
squeezenet1_0 |
- |
squeezenet1_0 |
SqueezeNet1.0 |
squeezenet1_1 |
- |
squeezenet1_1 |
SqueezeNet1.1 |
senet_154 |
- |
- |
SENet_154 |
vgg11 |
- |
vgg11 |
VGG11 |
vgg11_bn |
- |
vgg11_bn |
VGG11_bn |
vgg13 |
- |
vgg13 |
VGG13 |
vgg13_bn |
- |
vgg13_bn |
VGG13_bn |
vgg16 |
VGG16 |
vgg16 |
VGG16 |
vgg16_bn |
- |
vgg16_bn |
VGG16_bn |
vgg19 |
VGG19 |
vgg19 |
VGG19 |
vgg19_bn |
- |
vgg19_bn |
VGG19_bn |
wide_resnet50_2 |
- |
wide_resnet50_2 |
- |
wide_resnet101_2 |
- |
wide_resnet101_2 |
- |
xception |
Xception |
- |
Xception |
Available Custom Network Layers
Name in Monk |
Name in Keras backend |
Name in pytorch backend |
Name in mxnet backed |
fully_connected |
Dense |
Linear |
Dense |
Dropout |
Dropout |
Dropout |
Dropout |
Flatten |
Flatten |
Flatten |
Flatten |
convolution1d |
Conv1D |
Conv1d |
Conv1D |
convolution |
Conv2D |
Conv2d |
Conv2D |
convolution3d |
Conv3D |
Conv3d |
Conv3D |
transposed_convolution1d |
- |
ConvTranspose1d |
Conv1DTranspose |
transposed_convolution |
Conv2DTranspose |
ConvTranspose2d |
Conv2DTranspose |
transposed_convolution3d |
Conv3DTranspose |
ConvTranspose3d |
Conv3DTranspose |
max_pooling1d |
MaxPooling1D |
MaxPool1d |
MaxPool1D |
max_pooling |
MaxPooling2D |
MaxPool2d |
MaxPool2D |
max_pooling3d |
MaxPooling3D |
MaxPool3d |
MaxPool3D |
average_pooling1d |
AveragePooling1D |
AvgPool1d |
AvgPool1D |
average_pooling |
AveragePooling2D |
AvgPool2d |
AvgPool2D |
average_pooling3d |
AveragePooling3D |
AvgPool3d |
AvgPool3D |
global_max_pooling1d |
GlobalMaxPooling1D |
AdaptiveMaxPool1d (With size = 1) |
GlobalMaxPool1D |
global_max_pooling |
GlobalMaxPooling2D |
AdaptiveMaxPool2d (With size = 1) |
GlobalMaxPool2D |
global_max_pooling3d |
GlobalMaxPooling3D |
AdaptiveMaxPool3d (With size = 1) |
GlobalMaxPool3D |
global_average_pooling1d |
GlobalAveragePooling1D |
AdaptiveAvgPool1d (With size = 1) |
GlobalAvgPool1D |
global_average_pooling |
GlobalAveragePooling2D |
AdaptiveAvgPool2d (With size = 1) |
GlobalAvgPool2D |
global_average_pooling3d |
GlobalAveragePooling3D |
AdaptiveAvgPool3d (With size = 1) |
GlobalAvgPool3D |
add |
Add |
Add |
Add |
concatenate |
Concatenate |
Concatenate |
Concatenate |
batchnorm |
BatchNormalization |
BatchNorm1d |
BatchNorm |
batchnorm |
- |
BatchNorm2d |
- |
batchnorm |
- |
BatchNorm3d |
- |
instancenorm |
- |
InstanceNorm1d |
InstanceNorm |
instancenorm |
- |
InstanceNorm2d |
- |
instancenorm |
- |
InstanceNorm3d |
- |
layernorm |
- |
LayerNorm |
LayerNorm |
identity |
activation.linear |
Identity |
Identity |
Available Custom Network Activation Functions
Name in Monk |
Original name in Keras backend |
Original name in pytorch backend |
Original name in mxnet backend |
relu |
relu |
ReLU |
Activation('relu') |
sigmoid |
sigmoid |
Sigmoid |
Activation('sigmoid') |
Tanh Shrink |
tanh |
TanH |
Activation('tanh') |
softplus |
softplus |
Softplus |
Activation('softrelu') |
softsign |
softsign |
Softsign |
Activation('softsign') |
elu |
elu |
ELU |
ELU |
gelu |
- |
- |
GELU |
prelu |
PReLU |
PReLU |
PReLU |
selu |
selu |
SELU |
SELU |
swish |
- |
- |
Swish |
leakyrelu |
LeakyReLU |
LeakyReLU |
LeakyReLU |
hardshrink |
- |
HardShrink |
- |
hardtanh |
- |
HardTanh |
- |
logsigmoid |
- |
LogSigmoid |
- |
relu6 |
- |
ReLU6 |
- |
rrelu |
- |
RReLU |
- |
celu |
- |
CELU |
- |
softshrink |
- |
Softshrink |
- |
tanhshrink |
- |
Tanhshrink |
- |
threshold |
- |
Threshold |
- |
softmin |
- |
Softmin |
- |
softmax |
- |
Softmax |
- |
logsoftmax |
- |
LogSoftmax |
- |
hardsigmoid |
hard_sigmoid |
- |
- |
thresholded_relu |
ThresholdedReLU |
- |
- |
Available Optimizers
Name in Monk |
Original Name in Keras backend |
Original Name in pytorch backend |
Original Name in mxnet backend |
optimizer_adadelta |
Adadelta |
Adadelta |
AdaDelta |
optimizer_adagrad |
Adagrad |
Adagrad |
AdaGrad |
optimizer_adam |
Adam |
Adam |
Adam |
optimizer_adamax |
Adamax |
Adamax |
Adamax |
optimizer_nesterov_sgd |
SGD (With nesterov) |
SGD (With nesterov) |
NAG |
optimizer_nesterov_adam |
Nadam |
- |
Nadam |
optimizer_rmsprop |
RMSprop |
RMSprop |
RMSProp |
optimizer_momentum_rmsprop |
- |
RMSprop (With momentum) |
RMSprop (With momentum) |
optimizer_sgd |
SGD |
SGD |
SGD |
optimizer_signum |
- |
- |
Signum |
optimizer_adamw |
- |
AdamW |
- |
Available Loss functions
Name in Monk |
Original Name in keras backend |
Original Name in pytorch backend |
Original Name in mxnet backend |
loss_l2 |
mean_squared_error |
MSELoss |
L2Loss |
loss_l1 |
mean_absolute_error |
L1Loss |
L1Loss |
loss_squared_hinge |
squared_hinge |
SoftMarginLoss (not exactly) |
SquaredHingeLoss |
loss_hinge |
hinge |
HingeEmbeddingLoss |
HingeLoss |
loss_huber |
huber_loss |
SmoothL1Loss |
HuberLoss |
loss_softmax_crossentropy |
- |
CrossEntropyLoss |
SoftmaxCrossEntropyLoss |
loss_crossentropy |
categorical_crossentropy |
CrossEntropyLoss |
SoftmaxCrossEntropyLoss |
loss_multimargin |
categorical_hinge |
MultiMarginLoss |
- |
loss_multilabel_margin |
- |
MultiLabelMarginLoss |
- |
loss_binary_crossentropy |
binary_crossentropy |
BCELoss |
- |
loss_sigmoid_binary_crossentropy |
- |
BCEWithLogitsLoss |
SigmoidBinaryCrossEntropyLoss |
loss_kldiv |
kullback_leibler_divergence |
KLDivLoss |
KLDivLoss |
loss_poison_nll |
- |
PoissonNLLLoss |
PoissonNLLLoss |
Available network blocks
Block |
Name in Monk |
Resnet V1 Block With Downsampling |
resnet_v1_block |
Resnet V1 Block Without Downsampling |
resnet_v1_block |
Resnet V2 Block With Downsampling |
resnet_v2_block |
Resnet V2 Block Without Downsampling |
resnet_v2_block |
Resnet V1 Bottleneck Block With Downsampling |
resnet_v1_bottleneck_block |
Resnet V1 Bottleneck Block Without Downsampling |
resnet_v1_bottleneck_block |
Resnet V2 Bottleneck Block With Downsampling |
resnet_v2_bottleneck_block |
Resnet V2 Bottleneck Block Without Downsampling |
resnet_v2_bottleneck_block |
Resnext Block With Downsampling |
resnext_block |
Resnext Block Without Downsampling |
resnext_block |
Mobilenet V2 Linear BottleNeck Block |
mobilenet_v2_linear_block |
Mobilenet V2 Inverted Linear BottleNeck Block |
mobilenet_v2_inverted_linear_block |
Squeezenet Fire Block |
squeezenet_fire_block |
Densenet Dense Block |
densenet_dense_block |
Inception A Block |
inception_a_block |
Inception B Block |
inception_b_block |
Inception C Block |
inception_c_block |
Inception D Block |
inception_d_block |
Inception E Block |
inception_e_block |
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file monk_cls_test1-0.0.5.tar.gz
.
File metadata
-
Download URL:
monk_cls_test1-0.0.5.tar.gz
- Upload date:
- Size: 28.4 kB
- Tags: Source
-
Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9
File hashes
Hashes for monk_cls_test1-0.0.5.tar.gz
Algorithm |
Hash digest |
|
SHA256 |
6fab7fffcbfc081b3c0b64c535a7c5e8a935c0415a49d796f5b357a4734c6f6d |
|
MD5 |
73ddaee33caab16cbc567885927afae8 |
|
BLAKE2b-256 |
a087500937640d9268750404d57aeb786a161147abe5a636d9506e82de2beaac |
|
See more details on using hashes here.
Provenance
File details
Details for the file monk_cls_test1-0.0.5-py3-none-any.whl
.
File metadata
-
Download URL:
monk_cls_test1-0.0.5-py3-none-any.whl
- Upload date:
- Size: 33.8 kB
- Tags: Python 3
-
Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.33.0 CPython/3.6.9
File hashes
Hashes for monk_cls_test1-0.0.5-py3-none-any.whl
Algorithm |
Hash digest |
|
SHA256 |
56c7d0052beb7f428f839514db6598617e173e538bf55a4b47dea63fab8fe26a |
|
MD5 |
5f4b936fec93fe157172ba4cfa3c0017 |
|
BLAKE2b-256 |
e3194570097cc42155892ba63ae5e598c7315a104f7de351f61eb3c0184aded9 |
|
See more details on using hashes here.
Provenance