Monk Object Detection's 2_pytorch_finetune
Project description
Project Details
Pipeline based on GluonCV Fintuning project - https://gluon-cv.mxnet.io/build/examples_detection/index.html
Installation
Supports
- Python 3.6
- Python 3.7
cd installation
Check the cuda version using the command
nvcc -V
Select the right requirements file and run
cat <selected requirements file> | xargs -n 1 -L 1 pip install
For example for cuda 9.0
cat requirements_cuda9.0.txt | xargs -n 1 -L 1 pip install
Functional Documentation
Pipeline
- Load Dataset
gtf.Dataset(root_dir, img_dir, anno_file, batch_size=batch_size);
- Load Model
gtf.Model(model_name, use_pretrained=pretrained, use_gpu=gpu);
- Set Hyper-parameter
gtf.Set_Learning_Rate(0.001);
- Train
gtf.Train(epochs, params_file);
TODO
- Add SSD support
- Add YoloV3 support
- Add support for Coco-Type Annotated Datasets
- Add support for VOC-Type Annotated Dataset
- Add Faster-RCNN support
- Test on Kaggle and Colab
- Add validation feature & data pipeline
- Add Optimizer selection feature
- Enable Learning-Rate Scheduler Support
- Enable Layer Freezing
- Set Verbosity Levels
- Add Project management and version control support (Similar to Monk Classification)
- Add Graph Visualization Support
- Enable batch proessing at inference
- Add feature for top-k output visualization
- Add Multi-GPU training
- Auto correct missing or corrupt images - Currently skips them
- Add Experimental Data Analysis Feature
External Contributors list
- https://github.com/THEFASHIONGEEK: Multi GPU feature
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file monk_obj_test2-0.0.10.tar.gz
.
File metadata
- Download URL: monk_obj_test2-0.0.10.tar.gz
- Upload date:
- Size: 18.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cdd5528425d676d0130fe14694986db2928670447366a128d50fdb4b96de03f0 |
|
MD5 | 6f882ddba0379a02038a8989d28c8765 |
|
BLAKE2b-256 | 584e05daf5bc3168bccaeb79a8a7436c3b33bbcac13cd438067321c0369bf47c |
Provenance
File details
Details for the file monk_obj_test2-0.0.10-py3-none-any.whl
.
File metadata
- Download URL: monk_obj_test2-0.0.10-py3-none-any.whl
- Upload date:
- Size: 24.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2e6237be9ad5ba081f297a2ff1bbb82a90c0ffa64b4b708b12ab8146ad4ab7ed |
|
MD5 | 9246aa4fe5d5e59c7f2ea12be723cb0e |
|
BLAKE2b-256 | 407de0fcf44208e21fb9d0fc5b09d561810753c59a3c43aa4a8e4a072843a7ab |