Skip to main content

Monk Object Detection's 2_pytorch_finetune

Project description

Project Details

Pipeline based on GluonCV Fintuning project - https://gluon-cv.mxnet.io/build/examples_detection/index.html




Installation

Supports

  • Python 3.6
  • Python 3.7

cd installation

Check the cuda version using the command

nvcc -V

Select the right requirements file and run

cat <selected requirements file> | xargs -n 1 -L 1 pip install

For example for cuda 9.0

cat requirements_cuda9.0.txt | xargs -n 1 -L 1 pip install




Functional Documentation

Link




Pipeline

  • Load Dataset

gtf.Dataset(root_dir, img_dir, anno_file, batch_size=batch_size);

  • Load Model

gtf.Model(model_name, use_pretrained=pretrained, use_gpu=gpu);

  • Set Hyper-parameter

gtf.Set_Learning_Rate(0.001);

  • Train

gtf.Train(epochs, params_file);




TODO

  • Add SSD support
  • Add YoloV3 support
  • Add support for Coco-Type Annotated Datasets
  • Add support for VOC-Type Annotated Dataset
  • Add Faster-RCNN support
  • Test on Kaggle and Colab
  • Add validation feature & data pipeline
  • Add Optimizer selection feature
  • Enable Learning-Rate Scheduler Support
  • Enable Layer Freezing
  • Set Verbosity Levels
  • Add Project management and version control support (Similar to Monk Classification)
  • Add Graph Visualization Support
  • Enable batch proessing at inference
  • Add feature for top-k output visualization
  • Add Multi-GPU training
  • Auto correct missing or corrupt images - Currently skips them
  • Add Experimental Data Analysis Feature



External Contributors list

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monk_obj_test2-0.0.10.tar.gz (18.2 kB view details)

Uploaded Source

Built Distribution

monk_obj_test2-0.0.10-py3-none-any.whl (24.6 kB view details)

Uploaded Python 3

File details

Details for the file monk_obj_test2-0.0.10.tar.gz.

File metadata

  • Download URL: monk_obj_test2-0.0.10.tar.gz
  • Upload date:
  • Size: 18.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.6.9

File hashes

Hashes for monk_obj_test2-0.0.10.tar.gz
Algorithm Hash digest
SHA256 cdd5528425d676d0130fe14694986db2928670447366a128d50fdb4b96de03f0
MD5 6f882ddba0379a02038a8989d28c8765
BLAKE2b-256 584e05daf5bc3168bccaeb79a8a7436c3b33bbcac13cd438067321c0369bf47c

See more details on using hashes here.

Provenance

File details

Details for the file monk_obj_test2-0.0.10-py3-none-any.whl.

File metadata

  • Download URL: monk_obj_test2-0.0.10-py3-none-any.whl
  • Upload date:
  • Size: 24.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.6.9

File hashes

Hashes for monk_obj_test2-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 2e6237be9ad5ba081f297a2ff1bbb82a90c0ffa64b4b708b12ab8146ad4ab7ed
MD5 9246aa4fe5d5e59c7f2ea12be723cb0e
BLAKE2b-256 407de0fcf44208e21fb9d0fc5b09d561810753c59a3c43aa4a8e4a072843a7ab

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page