Skip to main content

MQT Quantum Auto Optimizer: Automatic Framework for Solving Optimization Problems with Quantum Computers

Project description

PyPI OS License: MIT CI CD Documentation codecov

MQT Quantum Auto Optimizer: Automatic Framework for Solving Optimization Problems with Quantum Computers

MQT Quantum Auto Optimizer is a framework that allows one to automatically translate an optimization problem into a quantum-compliant formulation and to solve it with one of the main quantum solvers (Quantum Annealer, Quantum Approximate Optimization Algorithm, Variational Quantum Eigensolver and Grover Adaptive Search)

MQT Quantum Auto Optimizer is part of the Munich Quantum Toolkit (MQT) developed by the Chair for Design Automation at the Technical University of Munich. This framework has been developed in collaboration with the VLSI Lab of Politecnico di Torino.

If you have any questions, feel free to create a discussion or an issue on GitHub.

Getting Started

mqt-qao is available via PyPI.

(venv) $ pip install mqt.qao

The following code gives an example on the usage:

from mqt.qao import Constraints, ObjectiveFunction, Problem, Solver, Variables

# Declaration of the problem variables
var = Variables()
a = var.add_binary_variable("a")
b = var.add_discrete_variable("b", [-1, 1, 3])
c = var.add_continuous_variable("c", -2, 2, 0.25)

# declaration of the objective functions involved in the problem
obj_func = ObjectiveFunction()
obj_func.add_objective_function(a + b * c + c**2)

# Declaration of the constraints
cst = Constraints()
cst.add_constraint("b + c >= 2", variable_precision=True)

# Creation of the problem
prb = Problem()
prb.create_problem(var, cst, obj_func)

# Solve the problem with the Dwave Quantum Annealer
solution = Solver().solve_Dwave_quantum_annealer(prb, token=token)

Detailed documentation and examples are available at ReadTheDocs.

Acknowledgements

The Munich Quantum Toolkit has been supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 101001318), the Bavarian State Ministry for Science and Arts through the Distinguished Professorship Program, as well as the Munich Quantum Valley, which is supported by the Bavarian state government with funds from the Hightech Agenda Bayern Plus.

TUM Logo Coat of Arms of Bavaria ERC Logo MQV Logo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mqt_qao-0.1.0.tar.gz (375.8 kB view hashes)

Uploaded Source

Built Distribution

mqt.qao-0.1.0-py3-none-any.whl (31.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page