Skip to main content

Quality assurance tools for MRI geometric distortion

Project description

mri_distortion_toolkit

codecov tests docsPyPI version

This code enables characterization, reporting, and correction of geometric distortion in Magnetic Resonance Imaging.

The workflow steps are below. All steps have well defined input/output so you can use any part of this code independently from the other parts. For an example of our automated reporting template see here

flowchart LR

AA[Phantom Design]

A[Marker <br>Extraction]--->B[Marker <br>Matching]
B[Marker <br>Matching]--->C[Field <br> Calculation] & E[Automated <br>reporting]
C[Field <br> Calculation]-->D[Spherical Harmonic <br>Analysis]
D[Spherical Harmonic <br>Analysis]-->E[Automated <br>reporting];
D[Spherical Harmonic <br>Analysis]-->F[Distortion Correction]

click AA "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/phantom_notes.html"
click A "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/marker_extraction.html"
click B "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/marker_matching.html"
click C "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/field_calculation.html"
click D "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/fit_spherical_harmonics.html"
click E "https://acrf-image-x-institute.github.io/mri_distortion_toolkit/reporting.html"

Setup/Build/Install

pip install mri_distortion_toolkit

Usage

Detailed documentation is here.

Directory Structure

  • docsrc markdown/rst source documentation
  • tests test cases
  • mri_distortion_toolkit source code
  • examples source code for the worked examples

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mri_distortion_toolkit-0.14.5.tar.gz (69.4 kB view details)

Uploaded Source

Built Distribution

mri_distortion_toolkit-0.14.5-py3-none-any.whl (67.2 kB view details)

Uploaded Python 3

File details

Details for the file mri_distortion_toolkit-0.14.5.tar.gz.

File metadata

File hashes

Hashes for mri_distortion_toolkit-0.14.5.tar.gz
Algorithm Hash digest
SHA256 330abff3e8455177aebcfa93fdb45c49b7fbc2268d30d4967df06b2e2f5f65d1
MD5 e887df3a55c7e9691b9b9cce9eb75421
BLAKE2b-256 424ef72094447caf7e9ed7f7f98e8f1a084ec0c81b9898e06d9d570f4fd7b838

See more details on using hashes here.

File details

Details for the file mri_distortion_toolkit-0.14.5-py3-none-any.whl.

File metadata

File hashes

Hashes for mri_distortion_toolkit-0.14.5-py3-none-any.whl
Algorithm Hash digest
SHA256 5f6faa2885d9294dd5ee0203debf9f1bb705434932b5431cc8619f11424f45a6
MD5 7f831a91f8636721d69cbec6127beddb
BLAKE2b-256 c88509e5513e6a26d94d34042f216e4d1904615e9859db2157f77bc4ae87b485

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page