Skip to main content

Valgrind massif.out parser

Project description

A parser for Valgrind massif.out files.

The msparser module offers a simple interface to parse the Valgrind massif.out file format, i.e. data files produced by the valgrind heap profiler.

How do I use it?

Import the module

As usual, import the module:

>>> import msparser

Parse a massif.out file

To extract the data from a massif.out file, you simply have to give its path to the parse_file function:

>>> data = msparser.parse_file('massif.out')

You could also use the msparser.parse function directly with a file descriptor.

Understand the data

The parsed data is returned as a dictionary which follow closely the massif.out format. It looks like this:

>>> from pprint import pprint
>>> pprint(data, depth=1)
{'cmd': './a.out',
 'desc': '--time-unit=ms',
 'detailed_snapshots_index': [...],
 'peak_snapshot_index': 16,
 'snapshots': [...],
 'time_unit': 'ms'}

The detailed_snapshots_index and peak_snapshot_index fields allow efficient localisation of the detailled and peak snapshots in the snapshots list. For example, to retrieve the peak snapshot from the snapshots list, we could do:

>>> peak_index = data['peak_snapshot_index']
>>> peak_snapshot = data['snapshots'][peak_index]

The snapshots list stores dictionaries representing each snapshot data:

>>> second_snapshot = data['snapshots'][1]
>>> pprint(second_snapshot)
{'heap_tree': None,
 'id': 1,
 'mem_heap': 1000,
 'mem_heap_extra': 8,
 'mem_stack': 0,
 'time': 183}

If the snapshot is detailled, the heap_tree field, instead of being None, will store a heap tree:

>>> peak_heap_tree = peak_snapshot['heap_tree']
>>> pprint(peak_heap_tree, depth=3)
{'children': [{'children': [...], 'details': {...}, 'nbytes': 12000},
              {'children': [], 'details': {...}, 'nbytes': 10000},
              {'children': [...], 'details': {...}, 'nbytes': 8000},
              {'children': [...], 'details': {...}, 'nbytes': 2000}],
 'details': None,
 'nbytes': 32000}

On the root node, the details field is always None, but on the children nodes it’s a dictionary which looks like this:

>>> first_child = peak_snapshot['heap_tree']['children'][0]
>>> pprint(first_child['details'], width=1)
{'address': '0x8048404',
 'file': 'prog.c',
 'function': 'h',
 'line': 4}

Obviously, if the node is below the massif threshold, the details field will be None.

Putting It All Together

From this data structure, it’s very easy to write a procedure that produce a data table ready for Gnuplot consumption:

print("# valgrind --tool=massif", data['desc'], data['cmd'])
print("# id", "time", "heap", "extra", "total", "stack", sep='\t')
for snapshot in data['snapshots']:
    id = snapshot['id']
    time = snapshot['time']
    heap = snapshot['mem_heap']
    extra = snapshot['mem_heap_extra']
    total = heap + extra
    stack = snapshot['mem_stack']
    print('  '+str(id), time, heap, extra, total, stack, sep='\t')

The output should looks like this:

# valgrind --tool=massif --time-unit=ms ./a.out
# id    time    heap    extra   total   stack
  0     0       0       0       0       0
  1     183     1000    8       1008    0
  2     184     2000    16      2016    0
  3     184     3000    24      3024    0
  4     184     4000    32      4032    0
  5     184     5000    40      5040    0
  6     184     6000    48      6048    0
  7     184     7000    56      7056    0
  8     184     8000    64      8064    0
  9     184     9000    72      9072    0

Tests

To run msparser’s test suite:

$ python msparser_test.py --verbose

The current build status on travis: http://travis-ci.org/#!/MathieuTurcotte/msparser

License

This code is free to use under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

msparser-1.3.tar.gz (7.4 kB view details)

Uploaded Source

File details

Details for the file msparser-1.3.tar.gz.

File metadata

  • Download URL: msparser-1.3.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for msparser-1.3.tar.gz
Algorithm Hash digest
SHA256 61767227edf86cb6f41f374c8fe171d87382fbfa7adefa8d70542d34da2c7ec9
MD5 221d9aa67e87f05cefda3f5c7bb3029d
BLAKE2b-256 df013f7dcd78dccdcf04933e2fbb05570e286b4033b3555624d0340bafc5ac6c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page