Skip to main content

A construct for implementing multi-AZ observability to detect single AZ impairments

Project description

multi-az-observability

This is a CDK construct for multi-AZ observability to help detect single-AZ impairments. This is currently an alpha version, but is being used in the AWS Advanced Multi-AZ Resilience Patterns workshop.

There is a lot of available information to think through and combine to provide signals about single-AZ impact. To simplify the setup and use reasonable defaults, this construct (available in TypeScript, Go, Python, and .NET [Java coming soon]) sets up the necessary observability. To use the CDK construct, you first define your service like this:

var wildRydesService = new Service(new ServiceProps(){
    ServiceName = "WildRydes",
    BaseUrl = "http://www.example.com",
    FaultCountThreshold = 25,
    AvailabilityZoneNames = vpc.AvailabilityZones,
    Period = Duration.Seconds(60),
    LoadBalancer = loadBalancer,
    DefaultAvailabilityMetricDetails = new ServiceMetricDetails(new ServiceMetricDetailsProps() {
        AlarmStatistic = "Sum",
        DatapointsToAlarm = 3,
        EvaluationPeriods = 5,
        FaultAlarmThreshold = 1,
        FaultMetricNames = new string[] { "Fault", "Error" },
        GraphedFaultStatistics = new string[] { "Sum" },
        GraphedSuccessStatistics = new string[] { "Sum" },
        MetricNamespace = metricsNamespace,
        Period = Duration.Seconds(60),
        SuccessAlarmThreshold = 99,
        SuccessMetricNames = new string[] {"Success"},
        Unit = Unit.COUNT,
    }),
    DefaultLatencyMetricDetails = new ServiceMetricDetails(new ServiceMetricDetailsProps(){
        AlarmStatistic = "p99",
        DatapointsToAlarm = 3,
        EvaluationPeriods = 5,
        FaultAlarmThreshold = 1,
        FaultMetricNames = new string[] { "FaultLatency" },
        GraphedFaultStatistics = new string[] { "p50" },
        GraphedSuccessStatistics = new string[] { "p50", "p99", "tm50", "tm99" },
        MetricNamespace = metricsNamespace,
        Period = Duration.Seconds(60),
        SuccessAlarmThreshold = 100,
        SuccessMetricNames = new string[] {"SuccessLatency"},
        Unit = Unit.MILLISECONDS,
    }),
    DefaultContributorInsightRuleDetails =  new ContributorInsightRuleDetails(new ContributorInsightRuleDetailsProps() {
        AvailabilityZoneIdJsonPath = azIdJsonPath,
        FaultMetricJsonPath = faultMetricJsonPath,
        InstanceIdJsonPath = instanceIdJsonPath,
        LogGroups = serverLogGroups,
        OperationNameJsonPath = operationNameJsonPath,
        SuccessLatencyMetricJsonPath = successLatencyMetricJsonPath
    }),
    CanaryTestProps = new AddCanaryTestProps() {
        RequestCount = 10,
        LoadBalancer = loadBalancer,
        Schedule = "rate(1 minute)",
        NetworkConfiguration = new NetworkConfigurationProps() {
            Vpc = vpc,
            SubnetSelection = new SubnetSelection() { SubnetType = SubnetType.PRIVATE_ISOLATED }
        }
    }
});
wildRydesService.AddOperation(new Operation(new OperationProps() {
    OperationName = "Signin",
    Path = "/signin",
    Service = wildRydesService,
    Critical = true,
    HttpMethods = new string[] { "GET" },
    ServerSideAvailabilityMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Signin",
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Signin"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultAvailabilityMetricDetails),
    ServerSideLatencyMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Signin",
        SuccessAlarmThreshold = 150,
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Signin"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultLatencyMetricDetails),
    CanaryTestLatencyMetricsOverride = new CanaryTestMetricsOverride(new CanaryTestMetricsOverrideProps() {
        SuccessAlarmThreshold = 250
    })
}));
wildRydesService.AddOperation(new Operation(new OperationProps() {
    OperationName = "Pay",
    Path = "/pay",
    Service = wildRydesService,
    HttpMethods = new string[] { "GET" },
    Critical = true,
    ServerSideAvailabilityMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Pay",
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Pay"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultAvailabilityMetricDetails),
    ServerSideLatencyMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Pay",
        SuccessAlarmThreshold = 200,
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Pay"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultLatencyMetricDetails),
    CanaryTestLatencyMetricsOverride = new CanaryTestMetricsOverride(new CanaryTestMetricsOverrideProps() {
        SuccessAlarmThreshold = 300
    })
}));
wildRydesService.AddOperation(new Operation(new OperationProps() {
    OperationName = "Ride",
    Path = "/ride",
    Service = wildRydesService,
    HttpMethods = new string[] { "GET" },
    Critical = true,
    ServerSideAvailabilityMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Ride",
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Ride"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultAvailabilityMetricDetails),
    ServerSideLatencyMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Ride",
        SuccessAlarmThreshold = 350,
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Ride"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultLatencyMetricDetails),
    CanaryTestLatencyMetricsOverride = new CanaryTestMetricsOverride(new CanaryTestMetricsOverrideProps() {
        SuccessAlarmThreshold = 550
    })
}));
wildRydesService.AddOperation(new Operation(new OperationProps() {
    OperationName = "Home",
    Path = "/home",
    Service = wildRydesService,
    HttpMethods = new string[] { "GET" },
    Critical = true,
    ServerSideAvailabilityMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Home",
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Ride"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultAvailabilityMetricDetails),
    ServerSideLatencyMetricDetails = new OperationMetricDetails(new OperationMetricDetailsProps() {
        OperationName = "Home",
        SuccessAlarmThreshold = 100,
        MetricDimensions = new MetricDimensions(new Dictionary<string, string> {{ "Operation", "Ride"}}, "AZ-ID", "Region")
    }, wildRydesService.DefaultLatencyMetricDetails),
    CanaryTestLatencyMetricsOverride = new CanaryTestMetricsOverride(new CanaryTestMetricsOverrideProps() {
        SuccessAlarmThreshold = 200
    })
}));

Then you provide that service definition to the CDK construct.

InstrumentedServiceMultiAZObservability multiAvailabilityZoneObservability = new InstrumentedServiceMultiAZObservability(this, "MultiAZObservability", new InstrumentedServiceMultiAZObservabilityProps() {
    Service = wildRydesService,
    CreateDashboards = true,
    Interval = Duration.Minutes(60), // The interval for the dashboard
    OutlierDetectionAlgorithm = OutlierDetectionAlgorithm.STATIC
});

You define some characteristics of the service, default values for metrics and alarms, and then add operations as well as any overrides for default values that you need. The construct can also automatically create synthetic canaries that test each operation with a very simple HTTP check, or you can configure your own synthetics and just tell the construct about the metric details and optionally log files. This creates metrics, alarms, and dashboards that can be used to detect single-AZ impact.

If you don't have service specific logs and custom metrics with per-AZ dimensions, you can still use the construct to evaluate ALB and NAT Gateway metrics to find single AZ faults.

BasicServiceMultiAZObservability multiAvailabilityZoneObservability = new BasicServiceMultiAZObservability(this, "MultiAZObservability", new BasicServiceMultiAZObservabilityProps() {
    ApplicationLoadBalancers = new IApplicationLoadBalancer[] { loadBalancer },
    NatGateways = new Dictionary<string, CfnNatGateway>() {
        { "us-east-1a", natGateway1},
        { "us-east-1b", natGateway2},
        { "us-east-1c", natGateway3},
    },
    CreateDashboard = true,
    OutlierDetectionAlgorithm = OutlierDetectionAlgorithm.STATIC,
    FaultCountPercentageThreshold = 1.0, // The fault rate to alarm on for errors seen from the ALBs in the same AZ
    PacketLossImpactPercentageThreshold = 0.01, // The percentage of packet loss to alarm on for the NAT Gateways in the same AZ
    ServiceName = "WildRydes",
    Period = Duration.Seconds(60), // The period for metric evaluation
    Interval = Duration.Minutes(60) // The interval for the dashboards
    EvaluationPeriods = 5,
    DatapointsToAlarm = 3
});

If you provide a load balancer, the construct assumes it is deployed in each AZ of the VPC the load balancer is associated with and will look for HTTP metrics using those AZs as dimensions.

Both options support running workloads on EC2, ECS, Lambda, and EKS.

TODO

  • Add additional unit tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multi_az_observability-0.0.1a20.tar.gz (80.0 MB view details)

Uploaded Source

Built Distribution

multi_az_observability-0.0.1a20-py3-none-any.whl (80.0 MB view details)

Uploaded Python 3

File details

Details for the file multi_az_observability-0.0.1a20.tar.gz.

File metadata

File hashes

Hashes for multi_az_observability-0.0.1a20.tar.gz
Algorithm Hash digest
SHA256 39e85ac767b251dfc2c0a830a96447e44fdd8d5f271eef38fb02cee2dec6500a
MD5 bb7c446e3ce5dd556baf80ad17ff9801
BLAKE2b-256 9874e4ac883411bf682414dcbf40d48788e1a76dbda189effaa843c067a79782

See more details on using hashes here.

File details

Details for the file multi_az_observability-0.0.1a20-py3-none-any.whl.

File metadata

File hashes

Hashes for multi_az_observability-0.0.1a20-py3-none-any.whl
Algorithm Hash digest
SHA256 640dd274e8d332df6bda978c41776b8976826287548a3f5efd6f432697d4cbfa
MD5 0135acebf33c6b3040d8781b580c7b28
BLAKE2b-256 4b9be50621e18d88124d303c9f317e158bef310e0f4cc186a3887a07ac7bcd15

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page