Skip to main content

Cloud-native, scalable, and user-friendly multi dimensional energy data!

Project description

PyPI Conda Python Version Status License

Tests Codecov Read the documentation at https://mdio-python.readthedocs.io/

pre-commit Black

PyPI Downloads Conda Downloads

"MDIO" is a library to work with large multidimensional energy datasets. The primary motivation behind MDIO is to represent multidimensional time series data in a format that makes it easier to use in resource assessment, machine learning, and data processing workflows.

See the documentation for more information.

Features

Shared Features

  • Abstractions for common energy data types (see below).
  • Cloud native chunked storage based on Zarr and fsspec.
  • Lossy and lossless data compression using Blosc and ZFP.
  • Distributed reads and writes using Dask.
  • Powerful command-line-interface (CLI) based on Click

Domain Specific Features

  • Oil & Gas Data
    • Import and export 2D - 5D seismic data types stored in SEG-Y.
    • Import seismic interpretation, horizon, data. FUTURE
    • Optimized chunking logic for various seismic types. FUTURE
  • Wind Resource Assessment
    • Numerical weather prediction models with arbitrary metadata. FUTURE
    • Optimized chunking logic for time-series analysis and mapping. FUTURE
    • Xarray interface. FUTURE

The features marked as FUTURE will be open-sourced at a later date.

Installing MDIO

Simplest way to install MDIO via pip from PyPI:

$ pip install multidimio

or install MDIO via conda from conda-forge:

$ conda install -c conda-forge multidimio

Extras must be installed separately on Conda environments.

For details, please see the installation instructions in the documentation.

Using MDIO

Please see the Command-line Reference for details.

For Python API please see the API Reference for details.

Requirements

Minimal

Chunked storage and parallelization: zarr, dask, numba, and psutil.
SEG-Y Parsing: segyio
CLI and Progress Bars: click, click-params, and tqdm.

Optional

Distributed computing [distributed]: distributed and bokeh.
Cloud Object Store I/O [cloud]: s3fs, gcsfs, and adlfs.
Lossy Compression [lossy]: zfpy

Contributing to MDIO

Contributions are very welcome. To learn more, see the Contributor Guide.

Licensing

Distributed under the terms of the Apache 2.0 license, MDIO is free and open source software.

Issues

If you encounter any problems, please file an issue along with a detailed description.

Credits

This project was established at TGS. Original authors and current maintainers are Altay Sansal and Sri Kainkaryam; with the support of many more great colleagues.

This project template is based on @cjolowicz's Hypermodern Python Cookiecutter template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

multidimio-0.3.1.tar.gz (53.2 kB view details)

Uploaded Source

Built Distribution

multidimio-0.3.1-py3-none-any.whl (63.9 kB view details)

Uploaded Python 3

File details

Details for the file multidimio-0.3.1.tar.gz.

File metadata

  • Download URL: multidimio-0.3.1.tar.gz
  • Upload date:
  • Size: 53.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for multidimio-0.3.1.tar.gz
Algorithm Hash digest
SHA256 fa2835fc32977601cacff3d497bfed4ba55988cf5c88281e32861dcee4fd37f1
MD5 dd652a56989ba67b3579f623bd0111c9
BLAKE2b-256 841502051140c21553c88a492cd4b58591e9e959967a3454ad4f1854d50ad6a4

See more details on using hashes here.

Provenance

File details

Details for the file multidimio-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: multidimio-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 63.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for multidimio-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 05f04e55aa46bf58ab4aa64cd25a988cca5255150e46cc67ccded50487637faa
MD5 cefc44a817304be2a397a49ed0fcc49a
BLAKE2b-256 f32a81a3f8382a1629d57a92d92e78b20b00b121d34b3ee1ae1dc30aa6b4a8a2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page