music as data, data as music
Reason this release was yanked:
update
Project description
music as data, data as music
unleashing data tools for music theory, analysis and composition
A python library for pitch class set and rhythmic sequences classification and manipulation, the generation of networks in generalized music and sound spaces, deep learning algorithms for timbre recognition, and the sonification of arbitrary data
Table of contents
Quick start
pip install musicntwrk
or
pip install musicntwrk[with_MPI]
(if there is a pre-existing installation of MPI, pip will automatically install the mpi4pi wrapper)
- OR download the latest release from GitHub
- Clone the repo:
git clone https://github.com/marcobn/musicntwrk.git
- cd musicntwrk-2.0
- pip install .
- Examples and support files can be downloaded here
There are three example notebooks: basic, advanced harmony, advanced timbre. See the ipynb files for a full description.
What's included
musicntwrk is a project written for python 3 and comprised of a main module, musicntwrk
, and many additional helper packages included in the distribution:
musicntwrk
- is the main module and contains helper clasess for pitch class set classification and manipulation in any arbitrary temperament (PCSet, PCSetR and PCSrow), and the main class musicntwrk that allows the construction of generalized musical space networks using distances between common descriptors (interval vectors, voice leadings, rhythm distance, etc.); the analysis of scores, the sonification of data and the generation of compositional frameworks.musicntwrk
acts as a wrapper for the various functions organized in the following sub projects:networks
- contains all the modules to construct dictionaries and networks of pitch class set spaces including voice leading, rhythmic spaces, timbral spaces and score network and orchestarion analysisdata
- sonification of arbitrary data structures, including automatic score (musicxml) and MIDI generationtimbre
- analysis and characterization of timbre from a (psycho-)acoustical point of view. In particular, it provides: the characterization of sound using, among others, Mel Frequency or Power Spectrum Cepstrum Coefficients (MFCC or PSCC); the construction of timbral networks using descriptors based on MF- or PS-CCsharmony
- helper functions for harmonic analysis, design and autonomous scoringml_utils
- machine learning models for timbre recognition through the TensorFlow Keras frameworkplotting
- plotting function including a module for automated network drawingutils
- utility functions used by other modules
Documentation
The most computationally intensive parts of the modules can be run on parallel processors using the MPI (Message Passing Interface) protocol. Communications are handled by two additional modules: communications
and load_balancing
. Since the user will never have to interact with these modules, we omit here a detailed description of their functions.
Author
Marco Buongiorno Nardelli
Marco Buongiorno Nardelli is Regents Professor at the University of North Texas: composer, flutist, computational materials physicist, and a member of CEMI, the Center for Experimental Music and Intermedia, and iARTA, the Initiative for Advanced Research in Technology and the Arts. He is a Fellow of the American Physical Society and of the Institute of Physics, and a Parma Recordings artist. See here for a longer bio-sketch.
Citation
Marco Buongiorno Nardelli, "musicntwrk, a python library for pitch class set and rhythmic sequences classification and manipulation, the generation of networks in generalized music and sound spaces, deep learning algorithms for timbre recognition, and the sonification of arbitrary data", www.musicntwrk.com (2019).
Thanks
This project has been made possible by contributions from the following institutions:
musicntwrk is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.
Copyright (C) 2018-2020 Marco Buongiorno Nardelli
www.materialssoundmusic.com
www.musicntwrk.com
mbn@unt.edu
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file musicntwrk-2.2.25.tar.gz
.
File metadata
- Download URL: musicntwrk-2.2.25.tar.gz
- Upload date:
- Size: 127.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 69ef5f32b3ddeb85fdc73d2cba4620463790a5947807c89eec1e44c04968efcd |
|
MD5 | af180ac8cdec2a3d76c421a961cb4e84 |
|
BLAKE2b-256 | cdad1b00c0784d12d8b433d2b1c8b1c45e1fcffd834284d1c42f8a1b39178cd2 |
File details
Details for the file musicntwrk-2.2.25-py3-none-any.whl
.
File metadata
- Download URL: musicntwrk-2.2.25-py3-none-any.whl
- Upload date:
- Size: 217.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5bca2d9e0cab30be275db180852c20606587f608fcc8a95592882f4714d51045 |
|
MD5 | 90ecca63948b28b766ccba429b594c3e |
|
BLAKE2b-256 | af2e37d0a5c1deebc80df821dac212597d899cdffcdf8fae9332411b60254552 |