Skip to main content

MXNet is an ultra-scalable deep learning framework. This version uses openblas.

Project description

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix the flavours of deep learning programs together to maximize the efficiency and your productivity.

Prerequisites

This package supports Linux and Mac OSX platforms. If you have GPU and are using Linux, you may want to check mxnet-cu80mkl and mxnet-cu80 with CUDA-8.0 support, or mxnet-cu75mkl and mxnet-cu75 with CUDA-7.5 support. If you are using Linux without GPU, you may want to check mxnet-mkl with MKL support.

To install for other platforms (e.g. Windows) or for general installation guide, check Build Instruction.

Installation

To install, use:

pip install mxnet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mxnet-0.11.0-py2.py3-none-win_amd64.whl (17.8 MB view details)

Uploaded Python 2 Python 3 Windows x86-64

mxnet-0.11.0-py2.py3-none-manylinux1_x86_64.whl (11.4 MB view details)

Uploaded Python 2 Python 3

mxnet-0.11.0-cp36-cp36m-macosx_10_12_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

mxnet-0.11.0-cp36-cp36m-macosx_10_11_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

mxnet-0.11.0-cp35-cp35m-macosx_10_12_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.5m macOS 10.12+ x86-64

mxnet-0.11.0-cp35-cp35m-macosx_10_11_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.5m macOS 10.11+ x86-64

mxnet-0.11.0-cp34-cp34m-macosx_10_12_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.4m macOS 10.12+ x86-64

mxnet-0.11.0-cp34-cp34m-macosx_10_11_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.4m macOS 10.11+ x86-64

mxnet-0.11.0-cp27-cp27m-macosx_10_12_x86_64.whl (7.4 MB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

mxnet-0.11.0-cp27-cp27m-macosx_10_11_x86_64.whl (7.8 MB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

File details

Details for the file mxnet-0.11.0-py2.py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for mxnet-0.11.0-py2.py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 c87221119476048264140e34386e8b2f908f9951b75910d02f755b0f69e5a3a2
MD5 c87c0820b92d30c6efa5426e99542b1c
BLAKE2b-256 20966e6a8c22122275b2774c50860f30a75b8c06207407abe0faa7018da6d2eb

See more details on using hashes here.

File details

Details for the file mxnet-0.11.0-py2.py3-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.11.0-py2.py3-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e6b585ccfea8d005b2571f1778cd2a2da4b7451bdf252ab4d16fa1c947062d80
MD5 e58df66dd785c3492745a3b3d6965458
BLAKE2b-256 d71daf82e37a65250c03ddfb89f5c096d673c167c9ee8122d219f0d7d4492a82

See more details on using hashes here.

File details

Details for the file mxnet-0.11.0-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.11.0-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 af979a3fb92e1e8d685a97b4d14b6158eb3d2833a12f8cb5880170c996bc64b5
MD5 aebb7f3d3117a734a6d51fd5cd10d352
BLAKE2b-256 f723adcc31cd2be2480ca1d6ff950ce94cb9775844b1452ce0564fa0e9cf4aa4

See more details on using hashes here.

File details

Details for the file mxnet-0.11.0-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.11.0-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 7516a6e6c46b771b285024e6c434f5533fb0d2927fcf471997da48154d26b951
MD5 8a329bd7849d733c1a79a57f9f30a071
BLAKE2b-256 39968f1943fde1f03f40c0c6d950d26cea88dbc56e189a1c755f183aca487275

See more details on using hashes here.

File details

Details for the file mxnet-0.11.0-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.11.0-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ad16fec04331cfa0e3946aae0532f02555b39f9ea0de11b2c77b7507fd45f0a9
MD5 374ecfbe739203337f98738339489da5
BLAKE2b-256 996e1ffcc44f8d136ed2a4e373d8d5801e72e47d2b4742047f9b00dbb30dae45

See more details on using hashes here.

File details

Details for the file mxnet-0.11.0-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.11.0-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 98c8badd353c6a6be32d530d52a227cb3ba55c677aed3366a33b09bff35b576f
MD5 60436e466d3b0f6193d6021541fa5681
BLAKE2b-256 065d27c8bd8ee209df5c830bbe278172284490caa504d087ac3e54ae0b494d8e

See more details on using hashes here.

File details

Details for the file mxnet-0.11.0-cp34-cp34m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.11.0-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1ee73017cb79381c6e088e1f3b206e5f27255423ba82dcf0a7b4a5f00cddaf54
MD5 f037aba623af50438a6e630cba945a31
BLAKE2b-256 c49f2490062486dc99ff82c07715413a491e544f78378bee54d53efee50c0c0a

See more details on using hashes here.

File details

Details for the file mxnet-0.11.0-cp34-cp34m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.11.0-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 b56216fbd6e94c184f9f4f49d0ff2d772321baa99eab0739dd68770065a297b7
MD5 ac1807692f7efc0bddd7ace100951bd7
BLAKE2b-256 80517515c79bc1e1f607cc1405ce2e98a9c73db0d4edbb01dbb2101d5d0b35e7

See more details on using hashes here.

File details

Details for the file mxnet-0.11.0-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.11.0-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 583e440d4762f2388bbb5b38280ac8e6cea9fc81ec5f1c07993e491339d335ae
MD5 f1e294b516a7b917d2281f70bc84bea9
BLAKE2b-256 552195e3b87a41970d4dea3a0812157f9fd39ce7a1c72b5b65ad2e32d3157504

See more details on using hashes here.

File details

Details for the file mxnet-0.11.0-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.11.0-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 9e9511edd57ae8a2ad2ca44ac50ae634f0f0c0c1da54d80a32f0b366376cf5a5
MD5 06bc712757707e4361bc116a3996fae8
BLAKE2b-256 e74f4ed35e454cfbf31f4f3b3525c6ba4ecb1152ca88cf8494c7c8ddad125fb8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page