Skip to main content

MXNet is an ultra-scalable deep learning framework. This version uses openblas.

Project description

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix the flavours of deep learning programs together to maximize the efficiency and your productivity.

Prerequisites

This package supports Linux, Mac OSX and Windows platforms. If you have GPU, you may want to check: mxnet-cu90, mxnet-cu90mkl, mxnet-cu80 and mxnet-cu80mkl with CUDA-8.0 support, or mxnet-cu75 and mxnet-cu75mkl with CUDA-7.5 support. If you are using Linux without GPU, you may want to check mxnet-mkl with MKL support.

To install for other platforms (e.g. Windows, Raspberry Pi/ARM) or other versions, check Installing MXNet for instructions on building from source.

Installation

To install, use:

pip install mxnet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mxnet-0.12.0-py2.py3-none-win_amd64.whl (16.0 MB view details)

Uploaded Python 2 Python 3 Windows x86-64

mxnet-0.12.0-py2.py3-none-win32.whl (11.3 MB view details)

Uploaded Python 2 Python 3 Windows x86

mxnet-0.12.0-py2.py3-none-manylinux1_x86_64.whl (26.0 MB view details)

Uploaded Python 2 Python 3

mxnet-0.12.0-cp36-cp36m-macosx_10_12_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

mxnet-0.12.0-cp36-cp36m-macosx_10_11_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

mxnet-0.12.0-cp36-cp36m-macosx_10_10_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.6m macOS 10.10+ x86-64

mxnet-0.12.0-cp35-cp35m-macosx_10_12_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.5m macOS 10.12+ x86-64

mxnet-0.12.0-cp35-cp35m-macosx_10_11_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.5m macOS 10.11+ x86-64

mxnet-0.12.0-cp35-cp35m-macosx_10_10_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.5m macOS 10.10+ x86-64

mxnet-0.12.0-cp34-cp34m-macosx_10_12_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.4m macOS 10.12+ x86-64

mxnet-0.12.0-cp34-cp34m-macosx_10_11_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.4m macOS 10.11+ x86-64

mxnet-0.12.0-cp34-cp34m-macosx_10_10_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.4m macOS 10.10+ x86-64

mxnet-0.12.0-cp27-cp27m-macosx_10_12_x86_64.whl (11.5 MB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

mxnet-0.12.0-cp27-cp27m-macosx_10_11_x86_64.whl (12.0 MB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

mxnet-0.12.0-cp27-cp27m-macosx_10_10_x86_64.whl (13.2 MB view details)

Uploaded CPython 2.7m macOS 10.10+ x86-64

File details

Details for the file mxnet-0.12.0-py2.py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-py2.py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 d9fdcd3d1b21f1d30f229239b3009326543afd2fe742f4fbeb46d9b9dc989fa2
MD5 7eb68cb2bff0162fd3396eacbee7f36c
BLAKE2b-256 b62551bbd5090700f7b0b1c1d0433f8d664afe69b76698f07f669d43fd2dcfc3

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-py2.py3-none-win32.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-py2.py3-none-win32.whl
Algorithm Hash digest
SHA256 d50ee6dff74e330f26f1d494fc92ddfde970b8b16ba1f8120edf7e81d81919a7
MD5 8b3786bcda81a1b33cda517d2dd74e6e
BLAKE2b-256 042fc668335b5b9ab0e9b53240e6419a81203f0b2f4d97e6aacfb74c47bf5a5a

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-py2.py3-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-py2.py3-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 aac21d24bc736c4addb80ca04d6ca1b663d3cc74df0f78d0d4e8e1bcd4314131
MD5 6afde74956953bc2e6d368ab76e8e106
BLAKE2b-256 86607f58408c9aec2c2ea2944fac9ff86f17c2300bd96243ba3b953d1f7d4043

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e3cd1ce6db1a42a67191fe4503d547645e395e35c9b760c0407edef023191a34
MD5 784cc7319f7f76e64d42178e0807c075
BLAKE2b-256 b2d8f7304a4c80463675b2e7b6a18c8c41fa1e3100d1ac6cda5d0baa15859141

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 2dfd4c520075539893b98df2fcc3120ac9094247ab1a40dbbf51bd6a02f62752
MD5 66ef46bcd99d9db1e863e87070375a39
BLAKE2b-256 47f72dd9b7f496fa611ed58134f5ea0cd5aaf40d0e1c11df1d20a6e3223d5f21

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-cp36-cp36m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-cp36-cp36m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f7c308ff4601ba60e5221d74baebbd35ea1ed6f631afd0c20890c7950c3ceaa4
MD5 5b4712ce6be3e77eeb337d148c8d280d
BLAKE2b-256 2f3b5b3785e14a45e9a6aab2d4b558172fd20ed90fdc6d4e0fcb9cf9ff7e0681

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 8ef843a0eaf18ca31cc583077b08e88452c08fba3934ada0ae725fd6b4fe0d2f
MD5 343a9b657c71f38daaf257c44351c33e
BLAKE2b-256 9c0d36a313715c9d7cf17ba26045f71ec655fc271a6f9ea2e6f9f2f985aa5805

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 eccede8acb0d9c9f1d6f75ca083da8ef0a1a672838508351c7b579422ed9d6d8
MD5 8ea80bcd12a0a43097cb32e4b2920d33
BLAKE2b-256 befb6aaa4568893c793e5ac7a85bb8398c749aeccbbf2dfd1dd89c47a82c2b12

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-cp35-cp35m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-cp35-cp35m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 3742a3592317efc61fe2b0d1baa9f79c87e99b3a6790acf4f9b03e718e452e8d
MD5 dfb5f6ae8ea2146424b9740ca1630b0f
BLAKE2b-256 c73322bbc71af46dfb7a81157342a20826b08dcd0d81565b9a850f7f8cde79b8

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-cp34-cp34m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 cae3c83225f4da826ed4446a9f2efa063e42e8fd3cac46d99d948eaccf446cfe
MD5 53fc2047fbd5714aea05bfe04c368c8b
BLAKE2b-256 5be7451dbdf8d14b90b835da3fb50353b5197a2af3dd4799dfd804d2b66b713b

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-cp34-cp34m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 f67089c249c9d05c289f1888dc1203d123f7c43717b83cb8afd34580f52fe02b
MD5 68f7b6729a86bb6405e25778a2780ff1
BLAKE2b-256 d418172d54a72b1f3244327c991d8187945db1047c46387ba0edd699092b3082

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-cp34-cp34m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-cp34-cp34m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 82c1eb2e00a3a49613bd2db0fc514685d462c1b96f592ad2e65bec5273459841
MD5 8c62835c423168d9ccb9710364b4f553
BLAKE2b-256 69b58954eb605d8217c1bef4e3e116ab8ba8a804b749283354a7529ddc49515c

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c064891d84bd649df176bd6b081621fbf245fefcf8a82b3f0e23c1ca8a80a3c9
MD5 3799f8217aede18243dc77d72bc5a0ac
BLAKE2b-256 41a007de4513866c08b28b13949336e0e307a17904e6370be0a74b2857c855f4

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 db7fe0bcfb58deca371d2a9cd23038ee5f4936df138b99c1efed15bf970f1c82
MD5 95ef931e30ca4742f709f6269aff401a
BLAKE2b-256 40c679cb38621f87581cb93d5f8962062ef720aa86d34d1daa0c4e9b338ba1bd

See more details on using hashes here.

File details

Details for the file mxnet-0.12.0-cp27-cp27m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.0-cp27-cp27m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 bc12ba4f87584d1685064d5e1adc6e5b51f6fc486634405a228e885ec2b65ec1
MD5 31ca7bcf3d389f7f91da7e9ca8222093
BLAKE2b-256 cef40308fb560c86da60de64f3da80b22834760e35538d0d00a7b0839eba6d05

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page