Skip to main content

MXNet is an ultra-scalable deep learning framework. This version uses openblas.

Project description

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix the flavours of deep learning programs together to maximize the efficiency and your productivity.

For feature requests on the PyPI package, suggestions, and issue reports, click here. Prerequisites ———— This package supports Linux, Mac OSX and Windows platforms. If you have GPU, you may want to check: mxnet-cu90, mxnet-cu90mkl, mxnet-cu80 and mxnet-cu80mkl with CUDA-8.0 support, or mxnet-cu75 and mxnet-cu75mkl with CUDA-7.5 support. If you are using Linux without GPU, you may want to check mxnet-mkl with MKL support.

To install for other platforms (e.g. Windows, Raspberry Pi/ARM) or other versions, check Installing MXNet for instructions on building from source.

Installation

To install, use:

pip install mxnet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mxnet-0.12.1-py2.py3-none-win_amd64.whl (16.1 MB view details)

Uploaded Python 2 Python 3 Windows x86-64

mxnet-0.12.1-py2.py3-none-win32.whl (11.4 MB view details)

Uploaded Python 2 Python 3 Windows x86

mxnet-0.12.1-py2.py3-none-manylinux1_x86_64.whl (25.7 MB view details)

Uploaded Python 2 Python 3

mxnet-0.12.1-cp36-cp36m-macosx_10_12_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

mxnet-0.12.1-cp36-cp36m-macosx_10_11_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

mxnet-0.12.1-cp36-cp36m-macosx_10_10_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.6m macOS 10.10+ x86-64

mxnet-0.12.1-cp35-cp35m-macosx_10_12_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.5m macOS 10.12+ x86-64

mxnet-0.12.1-cp35-cp35m-macosx_10_11_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.5m macOS 10.11+ x86-64

mxnet-0.12.1-cp35-cp35m-macosx_10_10_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.5m macOS 10.10+ x86-64

mxnet-0.12.1-cp34-cp34m-macosx_10_12_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.4m macOS 10.12+ x86-64

mxnet-0.12.1-cp34-cp34m-macosx_10_11_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.4m macOS 10.11+ x86-64

mxnet-0.12.1-cp34-cp34m-macosx_10_10_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.4m macOS 10.10+ x86-64

mxnet-0.12.1-cp27-cp27m-macosx_10_12_x86_64.whl (11.5 MB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

mxnet-0.12.1-cp27-cp27m-macosx_10_11_x86_64.whl (12.0 MB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

mxnet-0.12.1-cp27-cp27m-macosx_10_10_x86_64.whl (13.2 MB view details)

Uploaded CPython 2.7m macOS 10.10+ x86-64

File details

Details for the file mxnet-0.12.1-py2.py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-py2.py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 382230eb611b50418f2638db2c435d7b9638227aa0f6d91ee11f6c0a69716d31
MD5 600f94aeaa7f9c1dbf2e461f0b2beecd
BLAKE2b-256 edaa7e83ab86e93da2fda4fea66883c0057dd52274a3cb5f377876009130a8a9

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-py2.py3-none-win32.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-py2.py3-none-win32.whl
Algorithm Hash digest
SHA256 b83c775a05ae153fd9c9740aa730ed4ffee347f4aed4a2ff2c264f51299fd576
MD5 a06ed4f10bbc2b12d2f3e8dd11232540
BLAKE2b-256 397742d2f59564491840935b999fbee97c4119b811e2b73acd0c49b893bfa93d

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-py2.py3-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-py2.py3-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1b8c17a2b9952cb69b6958704873b870b46459a77d55d89af17ec757b7cefe6e
MD5 74cd06b35411ef62164f070d9dcbbf1a
BLAKE2b-256 a5340fee2a360ff9d4b909bdba211ceecf73e47aa8415f5533799c971c7ec593

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e423a5da1fdaef5ff22faacadb0d6cffa8044ded57e52ed78eee38f212834f90
MD5 bdd84aedb0cf283972812005b0182eab
BLAKE2b-256 58f261a1e8e7b987f8328eae7ab5afdbbcaad516c7e51e2b5ec7526817c83d4f

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 efaf79546c9ec0d3b7e61ad41fcd80de5ffecc54cf4abd729963356acdf40d50
MD5 9fa686036f9595290f974be953ba0af0
BLAKE2b-256 b2bc00c8c36d9ad939180fcc326bb1b0fcb9f61e5389dc9be8afa82a0d81bd98

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-cp36-cp36m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-cp36-cp36m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 39af9cec0b139728f00dc08c9ae7e084cb133e03ac4d1b59060d9d9baf05158a
MD5 e083ef76943df2a09e570efbbe6473ee
BLAKE2b-256 069ebe1f79bcd625939feda3d0948c0f84ad6cd752b6a2fb2fdfd1fc76af5df4

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0257af08dbdbbf6f67abb12b77d9727e57c4ecea1ca4bfc8904fa05801afa780
MD5 4bc953350f4a6d7bff0cc85797863c51
BLAKE2b-256 063043e98afbe693c69067407860b0ba1bc26e93274fa4f2caf6b517d0f437e5

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 0ddb1ea5116e731b4ebbbb6a7660698cb80706e43ed6453795043ac5f56099fc
MD5 fb949f99cae926987a30859ebdc1ea51
BLAKE2b-256 97d4b7c34bdd5fe97b8272a42516b5e1cc4a74f02334a68f11a743fb61ab059b

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-cp35-cp35m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-cp35-cp35m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 412352933a5b398e7815fb6d9b8af114d027cb4809563880ec247beebf843774
MD5 28776202bfe2971720f884ce64dd50e1
BLAKE2b-256 6413d21fea95f5fc0d7835d63aba8e7c10dd4fc0d529f1188f608576edcee7f7

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-cp34-cp34m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1712d97ea9e7150f18545d712f1d842fccf9701e8d1f391c0bce953d83e9972e
MD5 53a945b7c47409e43521d2d45c8c91c0
BLAKE2b-256 3d17e4fed1035689e602cd98f018bfb1313361ed8d8217e2dd31ce89ed864c92

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-cp34-cp34m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 5f7d4a70842eba801de514c4ff5bf7fab87aee7ebd8e58c680bae3972c155973
MD5 7ce7f6c05138e8e57824dc9e3eba8533
BLAKE2b-256 b6f7ba9ea9247d2fdb2d5f42746a176b6c8cb49746d3852dfd61cf6df591a894

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-cp34-cp34m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-cp34-cp34m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 6ac72c192afb0bda406c8876c0762c33270f94c82a7e408b69782230933932ed
MD5 a58103b9c1379fcadc2aeb6cfd4b1f55
BLAKE2b-256 6b2bd7abb318c4c7ee4393699328333c91073a0533170920f86a0c90c9e5a002

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9046b011005f2b5a739cf8c62bcc560542cf02066e820f3815f70a7f4e1fc349
MD5 82318d30a0ef13299d8078fbda082ba0
BLAKE2b-256 65e1d7a33b0b21402cfd6545adbdd8911f7de56bca2ed744efab53fb62484b7d

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 d7b11b70014cceb54a07348bf0c33fadb65e1d5314a8ca8f97ba12aeef989e4f
MD5 b1f7abec3124659d9a4f67148d48fa9e
BLAKE2b-256 293187b77aec9471d69f876f38a89e4124b8eec2b76afbfc1d64e44157b7ad49

See more details on using hashes here.

File details

Details for the file mxnet-0.12.1-cp27-cp27m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-0.12.1-cp27-cp27m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e4d7d56998044d4153ac40c173e2a2cc1d44fe85ede55004d615709a4cf78dca
MD5 5e9a19e1996a53f6e318264be449dd68
BLAKE2b-256 49a352c5dbd0d9f5d24b186cd2d043f10da5c4b5c75ee58cbbc5420e4943e0ce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page