Skip to main content

MXNet is an ultra-scalable deep learning framework. This version uses openblas.

Project description

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix the flavours of deep learning programs together to maximize the efficiency and your productivity.

For feature requests on the PyPI package, suggestions, and issue reports, click here. Prerequisites ———— This package supports Linux, Mac OSX and Windows platforms. If you have GPU, you may want to check: mxnet-cu90, mxnet-cu90mkl, mxnet-cu80 and mxnet-cu80mkl with CUDA-8.0 support, or mxnet-cu75 and mxnet-cu75mkl with CUDA-7.5 support. If you are using Linux without GPU, you may want to check mxnet-mkl with MKL support.

To install for other platforms (e.g. Windows, Raspberry Pi/ARM) or other versions, check Installing MXNet for instructions on building from source.

Installation

To install, use:

pip install mxnet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mxnet-1.0.0-py2.py3-none-win_amd64.whl (16.6 MB view details)

Uploaded Python 2 Python 3 Windows x86-64

mxnet-1.0.0-py2.py3-none-win32.whl (12.0 MB view details)

Uploaded Python 2 Python 3 Windows x86

mxnet-1.0.0-py2.py3-none-manylinux1_x86_64.whl (27.0 MB view details)

Uploaded Python 2 Python 3

mxnet-1.0.0-cp36-cp36m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

mxnet-1.0.0-cp36-cp36m-macosx_10_11_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

mxnet-1.0.0-cp36-cp36m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ x86-64

mxnet-1.0.0-cp35-cp35m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.5m macOS 10.12+ x86-64

mxnet-1.0.0-cp35-cp35m-macosx_10_11_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.5m macOS 10.11+ x86-64

mxnet-1.0.0-cp35-cp35m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.5m macOS 10.10+ x86-64

mxnet-1.0.0-cp34-cp34m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.4m macOS 10.12+ x86-64

mxnet-1.0.0-cp34-cp34m-macosx_10_11_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.4m macOS 10.11+ x86-64

mxnet-1.0.0-cp34-cp34m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.4m macOS 10.10+ x86-64

mxnet-1.0.0-cp27-cp27m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

mxnet-1.0.0-cp27-cp27m-macosx_10_11_x86_64.whl (12.5 MB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

mxnet-1.0.0-cp27-cp27m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ x86-64

File details

Details for the file mxnet-1.0.0-py2.py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-py2.py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 91eab4b13cbe29592480282447f66a18b1a37db0d17d85b3bf8c4b9fc77bcd78
MD5 c0ebb2c28e4b32108037b64975886f3f
BLAKE2b-256 59acde9c0278d2045532b8601bd325bb7cb93326afc8111d3692dda7aa18f953

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-py2.py3-none-win32.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-py2.py3-none-win32.whl
Algorithm Hash digest
SHA256 3438963a74520e2547dfcb3376dd7607ba14229eaa521783c8bb02c93d6d5518
MD5 b6865977eae908d8c06af4c8fd5b660c
BLAKE2b-256 6ebdd8409b4c91054ca4e641a023f19bc737aeb6e8653b0245d9da32c21b7f6b

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-py2.py3-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-py2.py3-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b1c71f2075b7447b43f71453f5eaf5ff66b22bf54292af65b34586d24dae6fe8
MD5 2170bdf61a742f8c84bc6cfa05b1388f
BLAKE2b-256 b7920ece8987a1f02a01d5b9fa3f04b9de24b5c696171a85cb30ba45ca3bd685

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1a2f8ab232c4c5ea59bb492765d4cb9077c4917f54402b6b33994f12b2d2a2d9
MD5 46ceb3849a36bc82f5f2e4cbc5cb4920
BLAKE2b-256 68549e69f4dcc3d7c19434f36f36927a0bfed6378da717c160839c3e9b8e5e69

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 0a6155854d0cf1543bef8f59a534bd370adf4dfc1937e61d90421f47aeb4f30d
MD5 71d2c80240fbfbf6aa5333db222edaf3
BLAKE2b-256 6e386d96adc2ea02a681dc7817990a5386a8da62e605f84ded90fb2888bc7bf0

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-cp36-cp36m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-cp36-cp36m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2df5e681a4d17871fcc91f201ab66721662cee0cf2808b279ed803ac647bb661
MD5 3c9c45d7add1f1f4dffaeace46656716
BLAKE2b-256 79759a497c636ed3d6f8f42054f62c35a7960ca029ba35059396b620ce3242fe

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 6aed0cf4b81b15ac5cfdc00fad94a9162389da37c33755195a5534e0715f671c
MD5 db00f09a861304955591061b9b7561f3
BLAKE2b-256 6c76fbcbeb92352baeae7472737bc6953b30ffec68ee2bbed639c0c245a62a98

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 1b23cc3c1c11272878c56f1da4b7ea776f6fec049d05a2d16da5f27649b2e987
MD5 507ea22ae3e38aacd973ebdb7cb3430b
BLAKE2b-256 5a5861f1eb1bccddced0ab685e415a14406436904eea905727faf0e36458678e

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-cp35-cp35m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-cp35-cp35m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 556dcafb66cb6183bc0b5880c4851d4195ae37d0f56a0f06d0af54acbf7a1a59
MD5 fcf3b2c6baec6ab5051f077c1d06bc7e
BLAKE2b-256 cf8675ba8e348aedd8109a0cfd2bc5d208cf9fb8314eff308fc7279a37ba6ef6

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-cp34-cp34m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 987b8a3ac79d20ea88f2576a595760d854fc915562589943afd7fcd8afa46d61
MD5 3e8947385c793c24a58e71dd94bd25f1
BLAKE2b-256 cfeda5b4adb30cd987c5ba3d7853b7f6cf91d906cfa44eaaf052628834a784c0

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-cp34-cp34m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 12654c96732a182b291eddc5fab476032038795ab18c8d80207e4be7abdab031
MD5 17764595fbf71fd293ccff8d4610e27b
BLAKE2b-256 581a890d539d3bf2bb0413dee96c48a20058609b138d9d69106c521e019d3a41

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-cp34-cp34m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-cp34-cp34m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5f8bc14fefc57d2485f2e65f8d5a3629e4b74258b1bc410d3b4195724e12920a
MD5 6ad53a705ef9c0a988d66bd61673be33
BLAKE2b-256 cd3ec7e149c6126831db15fe50c0d734599ea57c514fa6649e08f6dadca2a1f2

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0be1ae839375c303761c316477de9caa7326c73448fc96db7f55ae268364a2b9
MD5 db433e370e7aced84121e1068a995c51
BLAKE2b-256 ae5761a8d2349d167cda6d1e5aa9c2ddabb8b426e3a31fa2798bbad1a4cadb3b

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 8cfbc4f1ea9568db68583964805b66243ec38fb4e9990267bfd2e7c248878361
MD5 0974cff8d7e651193e6619b3fc0f6408
BLAKE2b-256 c4c0b6ea13d1fe26bdbb1a247c8a3f665df9384ddca529b3b0ef86b0140cf427

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0-cp27-cp27m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0-cp27-cp27m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 7b688b0d981650d9d4947f781a210bc80d8750f6a767e3c0f7ddad73ab468d37
MD5 64c4cc1c07a638f46e825dbfc8606a5d
BLAKE2b-256 9f182ce080af792832b25fd0ce9b2e5e66117db2567b2d3cafcb00c5acc65bad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page