MXNet is an ultra-scalable deep learning framework. This version uses openblas.
Project description
MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix the flavours of deep learning programs together to maximize the efficiency and your productivity.
For feature requests on the PyPI package, suggestions, and issue reports, click here. Prerequisites ———— This package supports Linux, Mac OSX and Windows platforms. If you have GPU, you may want to check: mxnet-cu90, mxnet-cu90mkl, mxnet-cu80 and mxnet-cu80mkl with CUDA-8.0 support, or mxnet-cu75 and mxnet-cu75mkl with CUDA-7.5 support. If you are using Linux without GPU, you may want to check mxnet-mkl with MKL support.
To install for other platforms (e.g. Windows, Raspberry Pi/ARM) or other versions, check Installing MXNet for instructions on building from source.
Installation
To install, use:
pip install mxnet
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
File details
Details for the file mxnet-1.0.0.post0-py2.py3-none-manylinux1_x86_64.whl
.
File metadata
- Download URL: mxnet-1.0.0.post0-py2.py3-none-manylinux1_x86_64.whl
- Upload date:
- Size: 27.0 MB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a12741ef72130b8bc592d30a6a613554ce75e222323e1db98176ebd3fe4c44d6 |
|
MD5 | 41381b6c072f7ab2a0a574260233e077 |
|
BLAKE2b-256 | 2cc4e77eb184f1e30601bd1bdb118e6831df750e6b9972f2ba3ef12c7cb25c6a |
File details
Details for the file mxnet-1.0.0.post0-cp36-cp36m-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: mxnet-1.0.0.post0-cp36-cp36m-macosx_10_12_x86_64.whl
- Upload date:
- Size: 11.7 MB
- Tags: CPython 3.6m, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0b1361c6b38d2892e97b4b38e6b8104ae44121e852ce1ccdb3a086bdfe251e0e |
|
MD5 | d73c0f95e66d4a7c1e26027d36d36d7a |
|
BLAKE2b-256 | ae26bfbef9cf6489cd738f1a3c9b0fef4edfeb940e0ee6b0891863731ea12a73 |
File details
Details for the file mxnet-1.0.0.post0-cp36-cp36m-macosx_10_11_x86_64.whl
.
File metadata
- Download URL: mxnet-1.0.0.post0-cp36-cp36m-macosx_10_11_x86_64.whl
- Upload date:
- Size: 12.5 MB
- Tags: CPython 3.6m, macOS 10.11+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 35cd24ba160b002e2f863022e0b94b49e6daeae1300130eaf47770c54fb28746 |
|
MD5 | 277da372bc91fb708fbadb13e00b0e5a |
|
BLAKE2b-256 | 1b606df6df36322f95b77dfd22c8d89b6353a80b331fc69ef25c42d22f78b208 |
File details
Details for the file mxnet-1.0.0.post0-cp36-cp36m-macosx_10_10_x86_64.whl
.
File metadata
- Download URL: mxnet-1.0.0.post0-cp36-cp36m-macosx_10_10_x86_64.whl
- Upload date:
- Size: 13.9 MB
- Tags: CPython 3.6m, macOS 10.10+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 981fff675e93213dbd9b80a9960bd01e97670c9e00dc885f140edd68e92642e2 |
|
MD5 | db71cbf945d6dee6e0738f27d5a51c71 |
|
BLAKE2b-256 | 5cd40718e7243548d7fd978ab1ca34510b7780eecbe92f35c71d189128a24f74 |
File details
Details for the file mxnet-1.0.0.post0-cp35-cp35m-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: mxnet-1.0.0.post0-cp35-cp35m-macosx_10_12_x86_64.whl
- Upload date:
- Size: 11.7 MB
- Tags: CPython 3.5m, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1c0eba5bdca0970a93c94e49cb60027053034f0a4077db0c9354e32672ee644d |
|
MD5 | e1e63023ec3da9dc2b25e4e6bcf24ba4 |
|
BLAKE2b-256 | e28f11f883ae8694044207edc7bf36b926b75c1e741ce7770bb64f2760af4112 |
File details
Details for the file mxnet-1.0.0.post0-cp35-cp35m-macosx_10_11_x86_64.whl
.
File metadata
- Download URL: mxnet-1.0.0.post0-cp35-cp35m-macosx_10_11_x86_64.whl
- Upload date:
- Size: 12.5 MB
- Tags: CPython 3.5m, macOS 10.11+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 92e617bd65e4e1c379d4d5b77d7a68d4ce3decc751b452129cd5ccd5ef9a9464 |
|
MD5 | db18d0ba5066805a9657c5f2a5264324 |
|
BLAKE2b-256 | aa90e62021bd2f83ecdf81342f84ced18a40ad11e274d4a57db63d0ad7ff76bf |
File details
Details for the file mxnet-1.0.0.post0-cp35-cp35m-macosx_10_10_x86_64.whl
.
File metadata
- Download URL: mxnet-1.0.0.post0-cp35-cp35m-macosx_10_10_x86_64.whl
- Upload date:
- Size: 13.9 MB
- Tags: CPython 3.5m, macOS 10.10+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a8a5b50dd0a83f2d8058744d60a954755fbc3976f55878833d8428079919752 |
|
MD5 | 3366f7a90c34201a1715e9b38fe05e95 |
|
BLAKE2b-256 | 1a2211506975367aae95d5ced105056c75d8dc50e65ce35438733da3caa5e5d0 |
File details
Details for the file mxnet-1.0.0.post0-cp34-cp34m-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: mxnet-1.0.0.post0-cp34-cp34m-macosx_10_12_x86_64.whl
- Upload date:
- Size: 11.7 MB
- Tags: CPython 3.4m, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9001d6ba4b8bae7e30f1c1bc699b104a1644a9ab80d191689190c7f15b054d15 |
|
MD5 | 1f528d1ffb2e9475c6e849072e07dd9a |
|
BLAKE2b-256 | 1240a985cfe5e3e9cc941e671a12ebffb4abd13de43e9a0e9113c12cf3427d68 |
File details
Details for the file mxnet-1.0.0.post0-cp34-cp34m-macosx_10_11_x86_64.whl
.
File metadata
- Download URL: mxnet-1.0.0.post0-cp34-cp34m-macosx_10_11_x86_64.whl
- Upload date:
- Size: 12.5 MB
- Tags: CPython 3.4m, macOS 10.11+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 19091e4d9a812355db105cfff2efe87853fa37cea9a777f8f9ee7f11da814c06 |
|
MD5 | 607a472efa6aad53634b4caf98e05efa |
|
BLAKE2b-256 | 3f42a8ded62c12bafa39e89f980f39773061d2f047cda6a334dc197aac7bb465 |
File details
Details for the file mxnet-1.0.0.post0-cp34-cp34m-macosx_10_10_x86_64.whl
.
File metadata
- Download URL: mxnet-1.0.0.post0-cp34-cp34m-macosx_10_10_x86_64.whl
- Upload date:
- Size: 13.9 MB
- Tags: CPython 3.4m, macOS 10.10+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5996fa3a479760d297fcc9b1bba458fe1c95dbd1c0718f01825ce7f60fb03cb6 |
|
MD5 | 20dc2dfa3ba305c647c648c93a6f7786 |
|
BLAKE2b-256 | b7e963c82da0f848e6df4005da6772faf28dd4978a05a7184d23a3d484424c21 |
File details
Details for the file mxnet-1.0.0.post0-cp27-cp27m-macosx_10_12_x86_64.whl
.
File metadata
- Download URL: mxnet-1.0.0.post0-cp27-cp27m-macosx_10_12_x86_64.whl
- Upload date:
- Size: 11.7 MB
- Tags: CPython 2.7m, macOS 10.12+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e605b7a80f024955286c3a987b9ba0a453aa4ad8c6b494764f5b638f6969d052 |
|
MD5 | f66d492be601eb8b0b3e1b78859d9f49 |
|
BLAKE2b-256 | 327150eb083fc2094dd728ca223bc496fde947b1fc59479ab041006c32b9c968 |
File details
Details for the file mxnet-1.0.0.post0-cp27-cp27m-macosx_10_11_x86_64.whl
.
File metadata
- Download URL: mxnet-1.0.0.post0-cp27-cp27m-macosx_10_11_x86_64.whl
- Upload date:
- Size: 12.5 MB
- Tags: CPython 2.7m, macOS 10.11+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | df98e86d0ad8c024917555e4fe5587f7b2760ba9b2f33b930e49727ac48623b3 |
|
MD5 | b4c38663756307e1d65b0273547404f8 |
|
BLAKE2b-256 | 42a3238ac7200e55fa702428588b153d173d4c6c861e2c915ada2af1dd85e417 |
File details
Details for the file mxnet-1.0.0.post0-cp27-cp27m-macosx_10_10_x86_64.whl
.
File metadata
- Download URL: mxnet-1.0.0.post0-cp27-cp27m-macosx_10_10_x86_64.whl
- Upload date:
- Size: 13.9 MB
- Tags: CPython 2.7m, macOS 10.10+ x86-64
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6c3e535b47826cc1aea77349fa2387df7044e542f8851044630400a2199d5a64 |
|
MD5 | 6ba9bcf2807ce35b155804428ab8d375 |
|
BLAKE2b-256 | f490a12d1546a9df76a0b43f7f506e549a4db4b5f53dff4989145774d15c92a5 |