Skip to main content

MXNet is an ultra-scalable deep learning framework. This version uses openblas.

Project description

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix the flavours of deep learning programs together to maximize the efficiency and your productivity.

For feature requests on the PyPI package, suggestions, and issue reports, click here. Prerequisites ———— This package supports Linux, Mac OSX and Windows platforms. If you have GPU, you may want to check: mxnet-cu90, mxnet-cu90mkl, mxnet-cu80 and mxnet-cu80mkl with CUDA-8.0 support, or mxnet-cu75 and mxnet-cu75mkl with CUDA-7.5 support. If you are using Linux without GPU, you may want to check mxnet-mkl with MKL support.

To install for other platforms (e.g. Windows, Raspberry Pi/ARM) or other versions, check Installing MXNet for instructions on building from source.

Installation

To install, use:

pip install mxnet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mxnet-1.0.0.post0-py2.py3-none-manylinux1_x86_64.whl (27.0 MB view details)

Uploaded Python 2 Python 3

mxnet-1.0.0.post0-cp36-cp36m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

mxnet-1.0.0.post0-cp36-cp36m-macosx_10_11_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

mxnet-1.0.0.post0-cp36-cp36m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ x86-64

mxnet-1.0.0.post0-cp35-cp35m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.5m macOS 10.12+ x86-64

mxnet-1.0.0.post0-cp35-cp35m-macosx_10_11_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.5m macOS 10.11+ x86-64

mxnet-1.0.0.post0-cp35-cp35m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.5m macOS 10.10+ x86-64

mxnet-1.0.0.post0-cp34-cp34m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.4m macOS 10.12+ x86-64

mxnet-1.0.0.post0-cp34-cp34m-macosx_10_11_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.4m macOS 10.11+ x86-64

mxnet-1.0.0.post0-cp34-cp34m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.4m macOS 10.10+ x86-64

mxnet-1.0.0.post0-cp27-cp27m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

mxnet-1.0.0.post0-cp27-cp27m-macosx_10_11_x86_64.whl (12.5 MB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

mxnet-1.0.0.post0-cp27-cp27m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ x86-64

File details

Details for the file mxnet-1.0.0.post0-py2.py3-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post0-py2.py3-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a12741ef72130b8bc592d30a6a613554ce75e222323e1db98176ebd3fe4c44d6
MD5 41381b6c072f7ab2a0a574260233e077
BLAKE2b-256 2cc4e77eb184f1e30601bd1bdb118e6831df750e6b9972f2ba3ef12c7cb25c6a

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post0-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post0-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0b1361c6b38d2892e97b4b38e6b8104ae44121e852ce1ccdb3a086bdfe251e0e
MD5 d73c0f95e66d4a7c1e26027d36d36d7a
BLAKE2b-256 ae26bfbef9cf6489cd738f1a3c9b0fef4edfeb940e0ee6b0891863731ea12a73

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post0-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post0-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 35cd24ba160b002e2f863022e0b94b49e6daeae1300130eaf47770c54fb28746
MD5 277da372bc91fb708fbadb13e00b0e5a
BLAKE2b-256 1b606df6df36322f95b77dfd22c8d89b6353a80b331fc69ef25c42d22f78b208

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post0-cp36-cp36m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post0-cp36-cp36m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 981fff675e93213dbd9b80a9960bd01e97670c9e00dc885f140edd68e92642e2
MD5 db71cbf945d6dee6e0738f27d5a51c71
BLAKE2b-256 5cd40718e7243548d7fd978ab1ca34510b7780eecbe92f35c71d189128a24f74

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post0-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post0-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1c0eba5bdca0970a93c94e49cb60027053034f0a4077db0c9354e32672ee644d
MD5 e1e63023ec3da9dc2b25e4e6bcf24ba4
BLAKE2b-256 e28f11f883ae8694044207edc7bf36b926b75c1e741ce7770bb64f2760af4112

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post0-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post0-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 92e617bd65e4e1c379d4d5b77d7a68d4ce3decc751b452129cd5ccd5ef9a9464
MD5 db18d0ba5066805a9657c5f2a5264324
BLAKE2b-256 aa90e62021bd2f83ecdf81342f84ced18a40ad11e274d4a57db63d0ad7ff76bf

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post0-cp35-cp35m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post0-cp35-cp35m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1a8a5b50dd0a83f2d8058744d60a954755fbc3976f55878833d8428079919752
MD5 3366f7a90c34201a1715e9b38fe05e95
BLAKE2b-256 1a2211506975367aae95d5ced105056c75d8dc50e65ce35438733da3caa5e5d0

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post0-cp34-cp34m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post0-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9001d6ba4b8bae7e30f1c1bc699b104a1644a9ab80d191689190c7f15b054d15
MD5 1f528d1ffb2e9475c6e849072e07dd9a
BLAKE2b-256 1240a985cfe5e3e9cc941e671a12ebffb4abd13de43e9a0e9113c12cf3427d68

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post0-cp34-cp34m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post0-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 19091e4d9a812355db105cfff2efe87853fa37cea9a777f8f9ee7f11da814c06
MD5 607a472efa6aad53634b4caf98e05efa
BLAKE2b-256 3f42a8ded62c12bafa39e89f980f39773061d2f047cda6a334dc197aac7bb465

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post0-cp34-cp34m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post0-cp34-cp34m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5996fa3a479760d297fcc9b1bba458fe1c95dbd1c0718f01825ce7f60fb03cb6
MD5 20dc2dfa3ba305c647c648c93a6f7786
BLAKE2b-256 b7e963c82da0f848e6df4005da6772faf28dd4978a05a7184d23a3d484424c21

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post0-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post0-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e605b7a80f024955286c3a987b9ba0a453aa4ad8c6b494764f5b638f6969d052
MD5 f66d492be601eb8b0b3e1b78859d9f49
BLAKE2b-256 327150eb083fc2094dd728ca223bc496fde947b1fc59479ab041006c32b9c968

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post0-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post0-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 df98e86d0ad8c024917555e4fe5587f7b2760ba9b2f33b930e49727ac48623b3
MD5 b4c38663756307e1d65b0273547404f8
BLAKE2b-256 42a3238ac7200e55fa702428588b153d173d4c6c861e2c915ada2af1dd85e417

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post0-cp27-cp27m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post0-cp27-cp27m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 6c3e535b47826cc1aea77349fa2387df7044e542f8851044630400a2199d5a64
MD5 6ba9bcf2807ce35b155804428ab8d375
BLAKE2b-256 f490a12d1546a9df76a0b43f7f506e549a4db4b5f53dff4989145774d15c92a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page