Skip to main content

MXNet is an ultra-scalable deep learning framework. This version uses openblas.

Project description

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix the flavours of deep learning programs together to maximize the efficiency and your productivity.

For feature requests on the PyPI package, suggestions, and issue reports, click here. Prerequisites ———— This package supports Linux, Mac OSX and Windows platforms. If you have GPU, you may want to check: mxnet-cu90, mxnet-cu90mkl, mxnet-cu80 and mxnet-cu80mkl with CUDA-8.0 support, or mxnet-cu75 and mxnet-cu75mkl with CUDA-7.5 support. If you are using Linux without GPU, you may want to check mxnet-mkl with MKL support.

To install for other platforms (e.g. Windows, Raspberry Pi/ARM) or other versions, check Installing MXNet for instructions on building from source.

Installation

To install, use:

pip install mxnet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mxnet-1.0.0.post1-py2.py3-none-win_amd64.whl (16.6 MB view details)

Uploaded Python 2 Python 3 Windows x86-64

mxnet-1.0.0.post1-py2.py3-none-win32.whl (12.0 MB view details)

Uploaded Python 2 Python 3 Windows x86

mxnet-1.0.0.post1-py2.py3-none-manylinux1_x86_64.whl (27.0 MB view details)

Uploaded Python 2 Python 3

mxnet-1.0.0.post1-cp36-cp36m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

mxnet-1.0.0.post1-cp36-cp36m-macosx_10_11_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

mxnet-1.0.0.post1-cp36-cp36m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ x86-64

mxnet-1.0.0.post1-cp35-cp35m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.5m macOS 10.12+ x86-64

mxnet-1.0.0.post1-cp35-cp35m-macosx_10_11_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.5m macOS 10.11+ x86-64

mxnet-1.0.0.post1-cp35-cp35m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.5m macOS 10.10+ x86-64

mxnet-1.0.0.post1-cp34-cp34m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.4m macOS 10.12+ x86-64

mxnet-1.0.0.post1-cp34-cp34m-macosx_10_11_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.4m macOS 10.11+ x86-64

mxnet-1.0.0.post1-cp34-cp34m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.4m macOS 10.10+ x86-64

mxnet-1.0.0.post1-cp27-cp27m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

mxnet-1.0.0.post1-cp27-cp27m-macosx_10_11_x86_64.whl (12.5 MB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

mxnet-1.0.0.post1-cp27-cp27m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ x86-64

File details

Details for the file mxnet-1.0.0.post1-py2.py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-py2.py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 f4adf1210ff91cabd3bd9786edaddceeb212900678905b4f6f8163064c01fa79
MD5 905df926e89a341a7525a21451e1a0a1
BLAKE2b-256 948a4035454cb2ffcc73d326ce6412bcf41c81575cc0c11902360fa5504e30b6

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-py2.py3-none-win32.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-py2.py3-none-win32.whl
Algorithm Hash digest
SHA256 12d7242e2d864cf7d4265305f718b79f57a2c2943bc18996c00e3433f9f3a0da
MD5 7d1f14b46457db0eed540d8567dcd744
BLAKE2b-256 4c0f4c94be4c9bd245d4e8eeeb8a61a49ddb1e95c2ca97ba3585ab2f5aae328d

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-py2.py3-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-py2.py3-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0d3b2f5b8003bd93886da83a1cf08100b10a0bf8dfc19eb4148d4d1c983e2b15
MD5 6a1ca486771589200dc5e5247ab4d29a
BLAKE2b-256 0becc9648a6604557b711b693b0b8d082038f282e5e0462ae651746e6f76d363

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 465ab772415eabdc0d557b74dc97200dd276dd57623432c98cbc60c6e1bb29c9
MD5 396e8030d7af4a296fceb02489869e45
BLAKE2b-256 0cb552bc2ba62cd3c8453676551223e2e218bb4f0ddca8228c04b4186a529169

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 7dbf46d33ef8a95679a6d55dfef832e40e981432ca6774ca44e679fedc1f8b77
MD5 38100ff523b7430e72914e486dcfb218
BLAKE2b-256 f58861b4b693a21d4c644012d0398122208223196ecf5303ca3328ca34d48bd5

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-cp36-cp36m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-cp36-cp36m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 27e6c822eee7a0ab2ebb985cbaf92a80e3aae4b9ca5940a76883b3fa553cff07
MD5 fff8a25dcfa32c14b173afcfe957a5fa
BLAKE2b-256 59cd3612fcf334b5d4f61417055056405b583bf7a82622a3e89908f90a190a54

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 26fac05bf523d1678b1ac7af3796e5f55f4584e12445a7efb89a347378dd8592
MD5 e320367992ccba6439881d6a3f30890c
BLAKE2b-256 02acc140897e8652421d20efebdb29291e3d4017820ea1d88dd386588dcdeddf

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 bee174188f1aa8b1c7dc0d72f7b2f9a6b746e1fe15f4adf3153d31c92b6638c2
MD5 4451f0ec14da09b66e4d2857d42202a5
BLAKE2b-256 67fa585ee1f3e4c1c8cede42d081ad2888b128cda733fe10a8a77d9894137a6d

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-cp35-cp35m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-cp35-cp35m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2c981f4877ac6dc54ab82489ed96a8326e4dc6a4c87630a3a756163be330cf9e
MD5 98c3f8a2f3986a0b2802f8cf33dbf9ef
BLAKE2b-256 81520103e9370b9d5a5c87ffe6ba6f5b21bae134e3cbb4adf1e32af331f6098c

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-cp34-cp34m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 cd1bd60bd9bb3a25101c62db1f259a56334340812c3c94b216c000bd34d78f26
MD5 64df58ca2d9b7d2270066416910115be
BLAKE2b-256 2c8584f53074343d4424efce1b8fb88717168ce6374e69c8fa3ec528e8247744

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-cp34-cp34m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 697fca793395ecc9b4744d322b3c59e24f339c01c1cc87ba90e7eac04a70f4f2
MD5 b6d3caecdd800ed0ce766ab0c601c03e
BLAKE2b-256 3149d34865737241732034a2d1e9028100c4e5384faf77bd90d83bd8d4f77820

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-cp34-cp34m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-cp34-cp34m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1aa6caae5eb2bd0ff242d438d429ac9e0d20d9be64b10a80fb3d3aae0385fd38
MD5 e007d5ed453d6e8585beab7086d1747b
BLAKE2b-256 76931043454a19229db74a9143afab372ec063fa6b9aa3951558dee148a8786c

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c8dad461c85de2bb5f321b413dc7bccd90245e080027f0118546f2854dee08dc
MD5 ce55492ca1c0cb6ae961cef0f50a8729
BLAKE2b-256 7039d29f3fda7895c0e2389a174038aacdc2bd0e27953bf79909d0e8ed77e5d6

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 7fa38e9678abd165a3ea90ac617d76348fd82d023709fd130e381cab3c669655
MD5 585b3ddda962e55fd3eb4cdf5e60dff1
BLAKE2b-256 abdc5989bcda48308d5993ea0f4bda80e0ae6e3ca3f390553f7d4d7e65efa6e5

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post1-cp27-cp27m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post1-cp27-cp27m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8fa508fdbdee2f1815f941727619c6649959d530a5bb327d91768e7ac9416332
MD5 79581f46106207bd4481f0274e0ccc0f
BLAKE2b-256 a3ce1fca9c4f63e4bcc82095dd94095dc30425909c8f004a9944a7afd96cdf4e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page