Skip to main content

MXNet is an ultra-scalable deep learning framework. This version uses openblas.

Project description

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix the flavours of deep learning programs together to maximize the efficiency and your productivity.

For feature requests on the PyPI package, suggestions, and issue reports, click here. Prerequisites ———— This package supports Linux, Mac OSX and Windows platforms. If you have GPU, you may want to check: mxnet-cu90, mxnet-cu90mkl, mxnet-cu80 and mxnet-cu80mkl with CUDA-8.0 support, or mxnet-cu75 and mxnet-cu75mkl with CUDA-7.5 support. If you are using Linux without GPU, you may want to check mxnet-mkl with MKL support.

To install for other platforms (e.g. Windows, Raspberry Pi/ARM) or other versions, check Installing MXNet for instructions on building from source.

Installation

To install, use:

pip install mxnet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mxnet-1.0.0.post2-py2.py3-none-manylinux1_x86_64.whl (27.4 MB view details)

Uploaded Python 2 Python 3

mxnet-1.0.0.post2-cp36-cp36m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

mxnet-1.0.0.post2-cp36-cp36m-macosx_10_11_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

mxnet-1.0.0.post2-cp36-cp36m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ x86-64

mxnet-1.0.0.post2-cp35-cp35m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.5m macOS 10.12+ x86-64

mxnet-1.0.0.post2-cp35-cp35m-macosx_10_11_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.5m macOS 10.11+ x86-64

mxnet-1.0.0.post2-cp35-cp35m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.5m macOS 10.10+ x86-64

mxnet-1.0.0.post2-cp34-cp34m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.4m macOS 10.12+ x86-64

mxnet-1.0.0.post2-cp34-cp34m-macosx_10_11_x86_64.whl (12.4 MB view details)

Uploaded CPython 3.4m macOS 10.11+ x86-64

mxnet-1.0.0.post2-cp34-cp34m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.4m macOS 10.10+ x86-64

mxnet-1.0.0.post2-cp27-cp27m-macosx_10_12_x86_64.whl (11.7 MB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

mxnet-1.0.0.post2-cp27-cp27m-macosx_10_11_x86_64.whl (12.4 MB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

mxnet-1.0.0.post2-cp27-cp27m-macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ x86-64

File details

Details for the file mxnet-1.0.0.post2-py2.py3-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post2-py2.py3-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dedf0bea157712e44e16a2d95a8a1560e5ac24d7cbc52b72322f8415b90629af
MD5 6d741af971ad4703da0c8eefd2954d96
BLAKE2b-256 a42c8587e51185a1116fde1791df38ed4d810754a3d82fa5705ad1e333c7717f

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post2-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post2-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 4cad73ffbb22187ff74f12a67e13eca2ffe76cbaf0200a6638932bc49952fbdd
MD5 d78ca4d67ba03a078bf989b8e4fde767
BLAKE2b-256 1d5436cc67ec9f8f3d5cc6a240d2e4479619edac06b092e6a2de791dedea4fb3

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post2-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post2-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 184ea0ec539b6bc6c38e3576d8cfaa1aefb3c5429ac5ab842aa5c896a95a6ca0
MD5 0e32786d0fb5139a9a145872ce919d22
BLAKE2b-256 b645610df6c71d9eaa6bdbfc862a38f98bbd90fccc1c080c72b5d1a45a12d95f

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post2-cp36-cp36m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post2-cp36-cp36m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d6f2756b0c76fcf3ac23df63f3d8d46f2af92f4d19fccc95457b846b32623f9a
MD5 85359b25c43d5e5fcaace4ab128c605f
BLAKE2b-256 0b646f42e5039df3ac3e66afa6267d5ffcb42d55f9ec37fea9a4fc3fc700e53b

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post2-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post2-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 740b891053643dc7858bc3361912da8729fec1c3b6c2801daa0c76b7fe812c89
MD5 6aac6da10aed0de144bee9967c8cc482
BLAKE2b-256 0737c380ce76f2554ca1f75318143e45b4f4f47c2bd1bbf25e883dc9ca6e60b7

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post2-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post2-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 c3c23f3de2dffdad60c80884ca64880ec4be9b745615b62c86d89f49e3d7916e
MD5 c0c781454147eed40745bab37e5950df
BLAKE2b-256 f58e2f0c174a944ac4760fc5a831cf541b0148ab41d9cdb591b14b162abf3ff6

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post2-cp35-cp35m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post2-cp35-cp35m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 99dcfa54d94e279a7138445d72e7eb8294d3b4454927220f51d5e0ba2a8f3205
MD5 17b44ebf02cf5693ece0a67aec28e80d
BLAKE2b-256 87b3029e530c0bf8cb87018bfd83de194e62187026917c20ec07c8aa25def9d0

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post2-cp34-cp34m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post2-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 7e5ce86ba232e39882f62278696cf0889027d75b8b9a08eadf61e1810ea7c430
MD5 5865e1b5a2b059e5ae41f1ce6fe3c394
BLAKE2b-256 61174b45920045469637ebfbd1bcc84e5e1eeac42c8248f92371343283dd8a62

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post2-cp34-cp34m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post2-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 b10a478a39b25101f51f9fb53eadaa88b48e6f3e35a4ecb4bc4b9b396e42d4ed
MD5 ba2888742edb9cef4f9a1bb8cd5069bd
BLAKE2b-256 f61be0904cdb6bec6a547f30153c969283fbecb83e5767ab9b4eeffdfffabf44

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post2-cp34-cp34m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post2-cp34-cp34m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8057f12112cd40d522bd910b34a9045af16c72cc2e23e2fe8ae0cd2f795ef044
MD5 49ccb914c2161189297c275bf82b3c6c
BLAKE2b-256 6453ed1b587ee5ec2a010abd5688da9a12da9be0e9eda5516bd92ed04f900fce

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post2-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post2-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 5cf26a4dc5c50855f554d5747a452a69f44a67d2819a8e3f1c47adab8dac7ba4
MD5 32a46f707e3e075672282ac0f4c77fb4
BLAKE2b-256 d3e119a817e44e0065a50c5ecf7f52c18fa4ed119d687314bd1e96c012b2fc28

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post2-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post2-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 fe520f132a812ed7fd895e556a739f31b16de909ffa67ee5a0977e2778fa1394
MD5 d8839246c02e4e54a6cb0425e0d8ec08
BLAKE2b-256 0de202f510b1d9b26afffdbd0ef9db3f128c64242f70338c5a5358736938e409

See more details on using hashes here.

File details

Details for the file mxnet-1.0.0.post2-cp27-cp27m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.0.0.post2-cp27-cp27m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9b5b6a9295543c1c4f79e64834b74a1576ff8543aad98859cab85bbd9fe8b9f3
MD5 f73d363f12e646c57219dc90a13b983d
BLAKE2b-256 593691f8ef5e1463200ed478764a6ebbe81581ba6911a995154e4ea481785118

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page