Skip to main content

MXNet is an ultra-scalable deep learning framework. This version uses openblas.

Project description

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix the flavours of deep learning programs together to maximize the efficiency and your productivity.

For feature requests on the PyPI package, suggestions, and issue reports, click here. Prerequisites ———— This package supports Linux, Mac OSX and Windows platforms. If you have GPU, you may want to check: mxnet-cu91, mxnet-cu91mkl, mxnet-cu90, mxnet-cu90mkl, mxnet-cu80 and mxnet-cu80mkl with CUDA-8.0 support, or mxnet-cu75 and mxnet-cu75mkl with CUDA-7.5 support. If you are using Linux without GPU, you may want to check mxnet-mkl with MKL support.

To install for other platforms (e.g. Windows, Raspberry Pi/ARM) or other versions, check Installing MXNet for instructions on building from source.

Installation

To install, use:

pip install mxnet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mxnet-1.1.0-py2.py3-none-manylinux1_x86_64.whl (23.7 MB view details)

Uploaded Python 2 Python 3

mxnet-1.1.0-cp36-cp36m-macosx_10_12_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

mxnet-1.1.0-cp36-cp36m-macosx_10_11_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

mxnet-1.1.0-cp36-cp36m-macosx_10_10_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.6m macOS 10.10+ x86-64

mxnet-1.1.0-cp35-cp35m-macosx_10_12_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.5m macOS 10.12+ x86-64

mxnet-1.1.0-cp35-cp35m-macosx_10_11_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.5m macOS 10.11+ x86-64

mxnet-1.1.0-cp35-cp35m-macosx_10_10_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.5m macOS 10.10+ x86-64

mxnet-1.1.0-cp34-cp34m-macosx_10_12_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.4m macOS 10.12+ x86-64

mxnet-1.1.0-cp34-cp34m-macosx_10_11_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.4m macOS 10.11+ x86-64

mxnet-1.1.0-cp34-cp34m-macosx_10_10_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.4m macOS 10.10+ x86-64

mxnet-1.1.0-cp27-cp27m-macosx_10_12_x86_64.whl (9.3 MB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

mxnet-1.1.0-cp27-cp27m-macosx_10_11_x86_64.whl (9.9 MB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

mxnet-1.1.0-cp27-cp27m-macosx_10_10_x86_64.whl (11.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ x86-64

File details

Details for the file mxnet-1.1.0-py2.py3-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0-py2.py3-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 14d72ea8f244e7b5bac7b4c9591f99fc1c7c4e1f76c6dc4f2f85e04b270d84b1
MD5 35952d4dfb37d1c5e5ddd5bdf8156d85
BLAKE2b-256 9a4b8fe47d8f044c78d5adfdfceffb664bdeca13bee2bf8ec7799ebf4d831c23

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 fa03858c81dae29795571fefb14fc68ef7e1d3458191ddf47b13b5814ede5329
MD5 ab3e6e79919cc16ab564be09e94d3ab7
BLAKE2b-256 9438bab69274b7481e85ae1e83215686ce4f56dff4b7ed860cf0d01878aae53c

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 9f3e27916782f6509112f436586130387bf882e4d5ee0b352ff1369ccdab78f8
MD5 c066477e9454adc31327830d02c7a30c
BLAKE2b-256 6432a2455fc7ae23866f9f9f8b097a1798b139b7f0ce35d0a6802ba8a5be67e5

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0-cp36-cp36m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0-cp36-cp36m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 92f120ff8ac99a1c04165dc929be4b51d46d74ea3a0a8396ee50daa19f113d5c
MD5 b4c221cf7f5188115e48e7f3677f26a5
BLAKE2b-256 cbf95ff2eed79fb1e9e794caf2bd14511ea8e7e078b6bd35e30b29b788cca3a2

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 388bf372399ca0198e8652001cf0a160bedd4f10c2938a5a88ffb720ebdac428
MD5 7b87b8f16c274c7e225392a8fe47e805
BLAKE2b-256 1872b4e9610414a201479d21c1199a2b8af47b8dc80e13c1c09255eba9018c1e

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 efb619a2580b2dd31cd3a0a7a96987b153b10576fc359560352add6f97949b60
MD5 bf6e0a7e63a6ad700ef584d81ffb7654
BLAKE2b-256 3d3a6e6335e9b35690b66fb06434430ac8a49b986264cd6f7d5f56bee040e9c1

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0-cp35-cp35m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0-cp35-cp35m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8ff83ff3c0c8fa6f43bdaf62fdda6d560bfb10f9f627f1f1854423acdb4fbe10
MD5 2ed660ac3366045a4ac94f14f82a3c9c
BLAKE2b-256 20c7b2d945a3527f6647730ea0acefd7ca84857a72e993801482359d6babf744

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0-cp34-cp34m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 347244069123b3f3fd61a1c02f045329bbba760b1422d490e592e3f2807f467b
MD5 6da80478853695fb4313b69fac8f048d
BLAKE2b-256 4f6653c2bbbbb4b571103c6770425be6b2965ce6661564775dca815de9d8a4f6

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0-cp34-cp34m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 1e64a288b587fda643423390558854c46e939be5193459925994c3a9f497ed2f
MD5 40357239c89d74ac39558c52310205a5
BLAKE2b-256 61e39e93001336c5695824ee8d5af427f7203573d73d7182217c1a6fe6d64c05

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0-cp34-cp34m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0-cp34-cp34m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1490cf019bcaadeaf09b53e135e1e6df0daeb5aa2a8145531cd0ed518875d58e
MD5 7e966951ae97ed32ae27a0c3072322e6
BLAKE2b-256 aacc25683534fc1dd7aa8733ec0a5aa1c0e76bb8b310c477141eb2dc32821549

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c69a486a4f50574c381b4da92367da5b29980c77cbeb3bffc555092bdfb5035e
MD5 e6be13fc2643c0e0cf77daf5da2aeb79
BLAKE2b-256 6f0e04fb3b3fa8005b5eaf662d4501b1133756a6ca4f5005b1e70450dec3b8b3

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 6f76b43801a23ea105706bbfaff30b0f9254d0dda9e7c4b06e19d89f9cf62695
MD5 775ec66a3915bc5bcb41e8be017353a0
BLAKE2b-256 5a8e85f9faf30563dd01d41b1c071af2b01518d429e3c459a31e56457d6f4b10

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0-cp27-cp27m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0-cp27-cp27m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9fd5ceb8fccf22bff4c51b38cfca4c770e52c0274f71502b3dbd5f64f2c748e8
MD5 dbc967f8f199e8a3f3792057d0411632
BLAKE2b-256 f654dce09716366b76d1a7396eaa45f495985b9acf312020728afafe1e936c15

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page