Skip to main content

MXNet is an ultra-scalable deep learning framework. This version uses openblas.

Project description

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix the flavours of deep learning programs together to maximize the efficiency and your productivity.

For feature requests on the PyPI package, suggestions, and issue reports, click here. Prerequisites ———— This package supports Linux, Mac OSX and Windows platforms. If you have GPU, you may want to check: mxnet-cu91, mxnet-cu91mkl, mxnet-cu90, mxnet-cu90mkl, mxnet-cu80 and mxnet-cu80mkl with CUDA-8.0 support, or mxnet-cu75 and mxnet-cu75mkl with CUDA-7.5 support. If you are using Linux without GPU, you may want to check mxnet-mkl with MKL support.

To install for other platforms (e.g. Windows, Raspberry Pi/ARM) or other versions, check Installing MXNet for instructions on building from source.

Installation

To install, use:

pip install mxnet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mxnet-1.1.0.post0-py2.py3-none-win_amd64.whl (19.1 MB view details)

Uploaded Python 2 Python 3 Windows x86-64

mxnet-1.1.0.post0-py2.py3-none-win32.whl (12.1 MB view details)

Uploaded Python 2 Python 3 Windows x86

mxnet-1.1.0.post0-py2.py3-none-manylinux1_x86_64.whl (23.8 MB view details)

Uploaded Python 2 Python 3

mxnet-1.1.0.post0-cp36-cp36m-macosx_10_12_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

mxnet-1.1.0.post0-cp36-cp36m-macosx_10_11_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

mxnet-1.1.0.post0-cp36-cp36m-macosx_10_10_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.6m macOS 10.10+ x86-64

mxnet-1.1.0.post0-cp35-cp35m-macosx_10_12_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.5m macOS 10.12+ x86-64

mxnet-1.1.0.post0-cp35-cp35m-macosx_10_11_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.5m macOS 10.11+ x86-64

mxnet-1.1.0.post0-cp35-cp35m-macosx_10_10_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.5m macOS 10.10+ x86-64

mxnet-1.1.0.post0-cp34-cp34m-macosx_10_12_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.4m macOS 10.12+ x86-64

mxnet-1.1.0.post0-cp34-cp34m-macosx_10_11_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.4m macOS 10.11+ x86-64

mxnet-1.1.0.post0-cp34-cp34m-macosx_10_10_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.4m macOS 10.10+ x86-64

mxnet-1.1.0.post0-cp27-cp27m-macosx_10_12_x86_64.whl (9.3 MB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

mxnet-1.1.0.post0-cp27-cp27m-macosx_10_11_x86_64.whl (9.9 MB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

mxnet-1.1.0.post0-cp27-cp27m-macosx_10_10_x86_64.whl (11.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ x86-64

File details

Details for the file mxnet-1.1.0.post0-py2.py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-py2.py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 b54967231f35b569eaae9b1d00f449a4862f803bf6bc57c8364fd88c2ac942a7
MD5 a90644a819cf0e42b04c97983b3e5701
BLAKE2b-256 5281ca664793c796703a683965962ccb55e47bcf119160515f522b1948a6f6e4

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-py2.py3-none-win32.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-py2.py3-none-win32.whl
Algorithm Hash digest
SHA256 a00dd302ad0f063e64df3e501e777125b6bfd550d7b566141e36b2b3f1282912
MD5 d43df9d41101badae23cfbb826a35c8d
BLAKE2b-256 4b42a8340261a00e7be1613f8a08b732d27be6f34c427a9521bf2da1b2cb19d8

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-py2.py3-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-py2.py3-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 475a854e62b54709813385987ee07b8ac8e255946b33d7efa1d1c81364af3db7
MD5 90cf84bcbb2422b5888661615a170f48
BLAKE2b-256 9698c9877e100c3d1ac92263bfaba7bb8a49294e099046592040a2ff8620ac61

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 73727e375cd4572db5eb6fdaee559d5413471b248159166969377fcb4e186725
MD5 03609d2298ef6955e67ee69c23a26aeb
BLAKE2b-256 680a014cb54d9a9228f9a5c8b90b7f543b595db4e0a277733817625e1b37697d

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 1b3c4614038fcb386acdd2b1c04b7edea6d76faffcf15d1cc6e92c09ac993f87
MD5 fb2c156ea6b982ffdb642abb8093a575
BLAKE2b-256 d84266e4e9acf26702afc2e55dd394b2f5ec7041bdbee027ad6a17b6e961b2fb

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-cp36-cp36m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-cp36-cp36m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e1b59f57aea9db44c1e92c7a14201476a53ad262447cb446a4f62e39aa0cdc75
MD5 5b4b00ed4cf29f043164878b03a2e3ee
BLAKE2b-256 0089b0cf4167f254cf5afaad5ce159583f279207e47f68e987ace5cb69965885

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 fcb2846c0b04a900b3f66e2ccb7dd121918f23f048342f03ea0ed94520a5faed
MD5 dec8bb265d598c36085e0b23f7c881c3
BLAKE2b-256 8a423436a922091d9792a6ee7d1f8f4ba577a1d98f6cea594522816bfb60bd07

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 f6cd1a24128d92197bd4000e266d418f6ab42a3067ec102d5d0fc68eec6ca0df
MD5 62f3ac57b0679eb4429cdcf6323ac7c8
BLAKE2b-256 9b6173d9d30429c691b8a6b10fe53c9bc7dc4463dc1a11172044274bf3f95a5d

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-cp35-cp35m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-cp35-cp35m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c332ad22109f5b03e9f635f6645160fe8001adb1dacb5fa92290b78bffeceb64
MD5 bbf550cf4b2ba2ca7db3f3459775bc2e
BLAKE2b-256 0019ccdcd9671bd44249bdf9bb8b401c16d4d9131b86e84d005c4cbc8d0ef37a

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-cp34-cp34m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 6a21c833df10117e676c3f63cb9168b4b7c44a4bfd35f15dc31d518eac8884a6
MD5 01abea6046636adb8eb5c9dafec58400
BLAKE2b-256 8c78af7a634025309ce64d2736caeb06eadd13ed8e480cc46ea457b5cf94b3d6

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-cp34-cp34m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 037d2397b58bcfcb7c41f237be0b3e47bfdaf1ffe96eb3ca02cc316f74bc82c0
MD5 46c251843216cd7c4556ccabe619b681
BLAKE2b-256 3f23a3e9263112de331144b8713be42d2511969f5bcabc8a998807caea3003c1

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-cp34-cp34m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-cp34-cp34m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 662219129759a7c13626181552ab49c5a1f6f91e94a04eba16493826240c5212
MD5 92a7b6cb54d718ed9f23df2f6512101e
BLAKE2b-256 cddbfcd7b5f0b1c06e6daf4c3527f1aeeac79027ea62d8478aa30ff88c9a40bd

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 902e8c6062231fdd4422e37cf939024a42069c5453899cdfff9139c8e9f1b494
MD5 731e003d45cd8a6cc25dcec84a43be70
BLAKE2b-256 f4b1146657f9a64b74ee3884952588318bf2befb2122cdadd29eb3175865116d

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 e6cf92c4f7d1d60d1ab25b36f5175ec396391e83372f26eb8e100acc7113bbe2
MD5 70c5c9a1e6d2cc995ec657809022e984
BLAKE2b-256 4c156d84297125d7940b65aa192d245530e4c68c8d0135d52dc489391093a85f

See more details on using hashes here.

File details

Details for the file mxnet-1.1.0.post0-cp27-cp27m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.1.0.post0-cp27-cp27m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8ebc63de64521c60b7e80e296018dcf300996354ffe7ec31cddf3891afad16cd
MD5 ce136ee4151678d8aa674c4695f77892
BLAKE2b-256 6a244a4aeecd15caa5dc9630b47de0e980a10c494b55fa92a3c6ef5e6548c8ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page