Skip to main content

MXNet is an ultra-scalable deep learning framework. This version uses openblas.

Project description

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix the flavours of deep learning programs together to maximize the efficiency and your productivity.

For feature requests on the PyPI package, suggestions, and issue reports, click here.

Prerequisites

This package supports Linux, Mac OSX, and Windows platforms. You may also want to check: - mxnet-cu92 with CUDA-9.2 support. - mxnet-cu92mkl with CUDA-9.2 support and MKLDNN support. - mxnet-cu91 with CUDA-9.1 support. - mxnet-cu91mkl with CUDA-9.1 support and MKLDNN support. - mxnet-cu90 with CUDA-9.0 support. - mxnet-cu90mkl with CUDA-9.0 support and MKLDNN support. - mxnet-cu80 with CUDA-8.0 support. - mxnet-cu80mkl with CUDA-8.0 support and MKLDNN support. - mxnet-cu75 with CUDA-7.5 support. - mxnet-cu75mkl with CUDA-7.5 support and MKLDNN support. - mxnet-mkl with MKLDNN support.

To install for other platforms (e.g. Windows, Raspberry Pi/ARM) or other versions, check Installing MXNet for instructions on building from source.

Installation

To install, use:

pip install mxnet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mxnet-1.2.0-py2.py3-none-win_amd64.whl (17.8 MB view details)

Uploaded Python 2 Python 3 Windows x86-64

mxnet-1.2.0-py2.py3-none-win32.whl (12.8 MB view details)

Uploaded Python 2 Python 3 Windows x86

mxnet-1.2.0-py2.py3-none-manylinux1_x86_64.whl (26.1 MB view details)

Uploaded Python 2 Python 3

mxnet-1.2.0-cp36-cp36m-macosx_10_12_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

mxnet-1.2.0-cp36-cp36m-macosx_10_11_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

mxnet-1.2.0-cp35-cp35m-macosx_10_12_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.5m macOS 10.12+ x86-64

mxnet-1.2.0-cp35-cp35m-macosx_10_11_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.5m macOS 10.11+ x86-64

mxnet-1.2.0-cp34-cp34m-macosx_10_12_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.4m macOS 10.12+ x86-64

mxnet-1.2.0-cp34-cp34m-macosx_10_11_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.4m macOS 10.11+ x86-64

mxnet-1.2.0-cp27-cp27m-macosx_10_12_x86_64.whl (10.1 MB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

mxnet-1.2.0-cp27-cp27m-macosx_10_11_x86_64.whl (11.2 MB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

File details

Details for the file mxnet-1.2.0-py2.py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.0-py2.py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 7deef8f24cfc8b728c00d1f2018ae15c34662757c4b7ee8a4f5c88c6fd88ae06
MD5 dd01ff60ab4a0ab1cae588443ab38332
BLAKE2b-256 810836d4945a13d9f76b82f14b28bcf5a95f0f1eb6166f7ac67b23fe7edf8a37

See more details on using hashes here.

File details

Details for the file mxnet-1.2.0-py2.py3-none-win32.whl.

File metadata

File hashes

Hashes for mxnet-1.2.0-py2.py3-none-win32.whl
Algorithm Hash digest
SHA256 eb6827c7ffc227288a6d476bd73eb3ed84969580b7b94162a7f69a990fc26ad1
MD5 63f0c26fd69cd0a2cb9ff6795bee5c8b
BLAKE2b-256 606f071f9ef51467f9f6cd35d1ad87156a29314033bbf78ad862a338b9eaf2e6

See more details on using hashes here.

File details

Details for the file mxnet-1.2.0-py2.py3-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.0-py2.py3-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6698b017b9b21aaa34fa013ea548446c7e1eb0ec2fe8cbca2a03212d95b337aa
MD5 1b29df9aadeb76c4d844206175dff746
BLAKE2b-256 450e507d59a4c409c005326a6535e1513828e59b83ea2afb7ae449d14542c6bb

See more details on using hashes here.

File details

Details for the file mxnet-1.2.0-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.0-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 18b2b6b52df2e1f202ecf1aa8f1e586a4b59480c1909b03afbc902a490471357
MD5 d968ce72ab2f7bc9be97aa80930f00b6
BLAKE2b-256 5067a671abc30aba820271f5df6f449f7bf34d80d6e2472d4780a1db0797d59b

See more details on using hashes here.

File details

Details for the file mxnet-1.2.0-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.0-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 1bc1ab9fcf8269e2e8752ef5148a76601d2587d644f52cf9af4ecafbc55a7779
MD5 a813054d28621cb87ea25ea429d27ffd
BLAKE2b-256 eeb0e7e68a9cf3e1edbb951cf22b784a41eb55661742c59f7b81f459724c8eeb

See more details on using hashes here.

File details

Details for the file mxnet-1.2.0-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.0-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ae1a9e9dfa2215e905f07fb27347ad9e30621f84432d1b863880de6a2a76dd8e
MD5 fecd9f6d59436ff222979f295ee79fcb
BLAKE2b-256 7803d37cac73c9344a00c58f8d393aab26e6e21e8d8fd1520b398a8269eec75d

See more details on using hashes here.

File details

Details for the file mxnet-1.2.0-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.0-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 8facbf1ae0ad6a1eca1901ce47a577b2cc9320da4359c29fafbf2ccc0793ebe9
MD5 c8ea3205626b5e2e2086b9d8c7b0cff2
BLAKE2b-256 9da7963a5bfb96c257bc4dc809792c3fe6fd518b8675f68687ce6aef2d65a123

See more details on using hashes here.

File details

Details for the file mxnet-1.2.0-cp34-cp34m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.0-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c5e13e575b20fe0b21cdea80ab202c495dfa0f9272835ab16022b4a534701bf6
MD5 9f359d9a217f112fb3e2794155bba937
BLAKE2b-256 3f4809811532d5587cc80382ede9c5d68fd8176001b0a7230a20a9c7fefc81d3

See more details on using hashes here.

File details

Details for the file mxnet-1.2.0-cp34-cp34m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.0-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 9e740843d3c2af420b0a4d69831e6035e0f91920e883e02a3e6f919147e66057
MD5 215f38d87900cbd6eab0594271429544
BLAKE2b-256 ff86c48ae32e295f719196ffa1108f87bacfcebb83cf0272943f528060d65723

See more details on using hashes here.

File details

Details for the file mxnet-1.2.0-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.0-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9cef42c6d24a3b4d635892176cac7726224d19a3df6ed4605be64313df4a4411
MD5 157e718cc4879d02f0e5f8ae6dd2c8ff
BLAKE2b-256 212d7e22e22a8a60d26fdd5428579054d5d82117d6042c91a20409c0143149e3

See more details on using hashes here.

File details

Details for the file mxnet-1.2.0-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.0-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 ce559cdc16d9ea1ec324664b8e5e667c0772e3e89fba35d123473aad190aa99c
MD5 03513769c9f34295d8e2a536739b9dc0
BLAKE2b-256 0f7d5d76c55181cbe6691ae989ffb2512e8f75d5ac1c4e7d69badbce609c99ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page