Skip to main content

MXNet is an ultra-scalable deep learning framework. This version uses openblas.

Project description

MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to mix the flavours of deep learning programs together to maximize the efficiency and your productivity.

For feature requests on the PyPI package, suggestions, and issue reports, click here.

Prerequisites

This package supports Linux, Mac OSX, and Windows platforms. You may also want to check: - mxnet-cu92 with CUDA-9.2 support. - mxnet-cu92mkl with CUDA-9.2 support and MKLDNN support. - mxnet-cu91 with CUDA-9.1 support. - mxnet-cu91mkl with CUDA-9.1 support and MKLDNN support. - mxnet-cu90 with CUDA-9.0 support. - mxnet-cu90mkl with CUDA-9.0 support and MKLDNN support. - mxnet-cu80 with CUDA-8.0 support. - mxnet-cu80mkl with CUDA-8.0 support and MKLDNN support. - mxnet-cu75 with CUDA-7.5 support. - mxnet-cu75mkl with CUDA-7.5 support and MKLDNN support. - mxnet-mkl with MKLDNN support.

To install for other platforms (e.g. Windows, Raspberry Pi/ARM) or other versions, check Installing MXNet for instructions on building from source.

Installation

To install, use:

pip install mxnet

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mxnet-1.2.1-py2.py3-none-win_amd64.whl (20.0 MB view details)

Uploaded Python 2 Python 3 Windows x86-64

mxnet-1.2.1-py2.py3-none-manylinux1_x86_64.whl (23.9 MB view details)

Uploaded Python 2 Python 3

mxnet-1.2.1-cp36-cp36m-macosx_10_12_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

mxnet-1.2.1-cp36-cp36m-macosx_10_11_x86_64.whl (11.4 MB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

mxnet-1.2.1-cp35-cp35m-macosx_10_12_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.5m macOS 10.12+ x86-64

mxnet-1.2.1-cp35-cp35m-macosx_10_11_x86_64.whl (11.4 MB view details)

Uploaded CPython 3.5m macOS 10.11+ x86-64

mxnet-1.2.1-cp34-cp34m-macosx_10_12_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.4m macOS 10.12+ x86-64

mxnet-1.2.1-cp34-cp34m-macosx_10_11_x86_64.whl (11.4 MB view details)

Uploaded CPython 3.4m macOS 10.11+ x86-64

mxnet-1.2.1-cp27-cp27m-macosx_10_12_x86_64.whl (10.3 MB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

mxnet-1.2.1-cp27-cp27m-macosx_10_11_x86_64.whl (11.4 MB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

File details

Details for the file mxnet-1.2.1-py2.py3-none-win_amd64.whl.

File metadata

  • Download URL: mxnet-1.2.1-py2.py3-none-win_amd64.whl
  • Upload date:
  • Size: 20.0 MB
  • Tags: Python 2, Python 3, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/36.5.0.post20170921 requests-toolbelt/0.8.0 tqdm/4.22.0 CPython/3.6.3

File hashes

Hashes for mxnet-1.2.1-py2.py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 109595db19db893dd77c92c904f6eb23229cf76a4fffc1a7215101053854d8b1
MD5 02bdeb2c2a5219943a404c24c1fe6f08
BLAKE2b-256 9ab1a56a780e49742d1adaf4843bf140e9d66f0a50b2cc35348467b7fe75bbf3

See more details on using hashes here.

File details

Details for the file mxnet-1.2.1-py2.py3-none-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.1-py2.py3-none-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5568a78f18513d89a9477a96e027e4ae4a112d43d73607ebab3aaf854cd87a93
MD5 704cd5e6a9d84153fc52f892c63369f7
BLAKE2b-256 87bbb7989f03555c7dbafa8c0faf806c436791f21ec24c05ed0cf521c1911001

See more details on using hashes here.

File details

Details for the file mxnet-1.2.1-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.1-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9567752a05e70fd037b2311127a43023b7ddeae26d2fc021c903b381b09c4a57
MD5 dc4a55cc61892c9852aeb247f7461241
BLAKE2b-256 b5b05f9589773065b677aa3998d84d4d85276580965bf5032395f0edff9fe4d3

See more details on using hashes here.

File details

Details for the file mxnet-1.2.1-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.1-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 2cce530ebdf6c39879649fdfccb5e4aff6575dc378a2d6ff52ed50afa5483911
MD5 1a2157daf9a2c94237dd08894d91fb19
BLAKE2b-256 66441448a8162a807db448489299c38a515d5bfd4f6cf63c116b55c5266898fc

See more details on using hashes here.

File details

Details for the file mxnet-1.2.1-cp35-cp35m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.1-cp35-cp35m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 b15f8cd598a927c9c58087110d2d0c60ff85f12d2e50f797915f52b059db137a
MD5 c0b7deac75fda106cf8f754fdd0af0fd
BLAKE2b-256 6127ca1866f8ec2a75795d81a5a17676d1af3c6a52108907696c8d5ccb994e65

See more details on using hashes here.

File details

Details for the file mxnet-1.2.1-cp35-cp35m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.1-cp35-cp35m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 4d79953f37e4fe6390e8efc1faa8c8564f252c2fda7c1cc2f05eb7290c1d3eb4
MD5 ac910e19d98ed0b1bd24220e1af94baa
BLAKE2b-256 8472640b6de35fe4f35f0cf89f440aca26208033f06b447152052b078b708b9f

See more details on using hashes here.

File details

Details for the file mxnet-1.2.1-cp34-cp34m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.1-cp34-cp34m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2affa9db12e9f88cb68bedd8855f0330c9dcdcceca068b2fef6a0df89e7900b2
MD5 66b61db81af7c6cabd2f6e49a6522749
BLAKE2b-256 a959e77df8e62f28578533ff6f59597bc958db4979fcc4aac45041357d1688ae

See more details on using hashes here.

File details

Details for the file mxnet-1.2.1-cp34-cp34m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.1-cp34-cp34m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 1728434b798f64643757bf9f070aa88e42749f19cce7abd2543825639c56fa62
MD5 6c4406d913bfd484184267646c57725c
BLAKE2b-256 b79f84250dc10ff6d9484768138998a6263b53eaadcbb7d2f9c2d4227b7f3bab

See more details on using hashes here.

File details

Details for the file mxnet-1.2.1-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.1-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 411b2dd5a56b653dc7ea50563d97aab3fd217b2d2b87ec0b63a4b35e2037d260
MD5 be7d800b6c8caa9305eaecb76e3af045
BLAKE2b-256 a046c59b1d9541c58492f6be4905c5574d70411d7e8bc7e7011a33a51f287177

See more details on using hashes here.

File details

Details for the file mxnet-1.2.1-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for mxnet-1.2.1-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 29ef9758cd60a17d82e76617ab95012fb14fb552cf7e7d6ca11a05bc02e40069
MD5 b6c48ad587bed166ba6f4e3828e8bcc7
BLAKE2b-256 4f847b237ee12f126cccc6ab039411ac0c3a1f2d0cb57870e3fc9890f9a684e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page