Type annotations for boto3.SageMaker 1.12.18 service, generated by mypy-boto3-buider 1.0.5
Project description
mypy-boto3-sagemaker
Type annotations for boto3.SageMaker 1.12.18 service compatible with mypy, VSCode, PyCharm and other tools.
Generated by mypy-boto3-buider 1.0.5.
More information can be found on boto3-stubs page.
How to use
Type checking
Make sure you have mypy installed and activated in your IDE.
Install boto3-stubs
for SageMaker
service.
python -m pip install boto3-stubs[mypy-boto3-sagemaker]
Use boto3
with mypy_boto3
in your project and enjoy type checking and auto-complete.
import boto3
from mypy_boto3 import sagemaker
# alternative import if you do not want to install mypy_boto3 package
# import mypy_boto3_sagemaker as sagemaker
# Use this client as usual, now mypy can check if your code is valid.
# Check if your IDE supports function overloads,
# you probably do not need explicit type annotations
# client = boto3.client("sagemaker")
client: sagemaker.SageMakerClient = boto3.client("sagemaker")
# works for session as well
session = boto3.session.Session(region="us-west-1")
session_client: sagemaker.SageMakerClient = session.client("sagemaker")
# Waiters need type annotation on creation
endpoint_deleted_waiter: sagemaker.EndpointDeletedWaiter = client.get_waiter("endpoint_deleted")
endpoint_in_service_waiter: sagemaker.EndpointInServiceWaiter = client.get_waiter("endpoint_in_service")
notebook_instance_deleted_waiter: sagemaker.NotebookInstanceDeletedWaiter = client.get_waiter("notebook_instance_deleted")
notebook_instance_in_service_waiter: sagemaker.NotebookInstanceInServiceWaiter = client.get_waiter("notebook_instance_in_service")
notebook_instance_stopped_waiter: sagemaker.NotebookInstanceStoppedWaiter = client.get_waiter("notebook_instance_stopped")
processing_job_completed_or_stopped_waiter: sagemaker.ProcessingJobCompletedOrStoppedWaiter = client.get_waiter("processing_job_completed_or_stopped")
training_job_completed_or_stopped_waiter: sagemaker.TrainingJobCompletedOrStoppedWaiter = client.get_waiter("training_job_completed_or_stopped")
transform_job_completed_or_stopped_waiter: sagemaker.TransformJobCompletedOrStoppedWaiter = client.get_waiter("transform_job_completed_or_stopped")
# Paginators need type annotation on creation
list_algorithms_paginator: sagemaker.ListAlgorithmsPaginator = client.get_paginator("list_algorithms")
list_apps_paginator: sagemaker.ListAppsPaginator = client.get_paginator("list_apps")
list_auto_ml_jobs_paginator: sagemaker.ListAutoMLJobsPaginator = client.get_paginator("list_auto_ml_jobs")
list_candidates_for_auto_ml_job_paginator: sagemaker.ListCandidatesForAutoMLJobPaginator = client.get_paginator("list_candidates_for_auto_ml_job")
list_code_repositories_paginator: sagemaker.ListCodeRepositoriesPaginator = client.get_paginator("list_code_repositories")
list_compilation_jobs_paginator: sagemaker.ListCompilationJobsPaginator = client.get_paginator("list_compilation_jobs")
list_domains_paginator: sagemaker.ListDomainsPaginator = client.get_paginator("list_domains")
list_endpoint_configs_paginator: sagemaker.ListEndpointConfigsPaginator = client.get_paginator("list_endpoint_configs")
list_endpoints_paginator: sagemaker.ListEndpointsPaginator = client.get_paginator("list_endpoints")
list_experiments_paginator: sagemaker.ListExperimentsPaginator = client.get_paginator("list_experiments")
list_flow_definitions_paginator: sagemaker.ListFlowDefinitionsPaginator = client.get_paginator("list_flow_definitions")
list_human_task_uis_paginator: sagemaker.ListHumanTaskUisPaginator = client.get_paginator("list_human_task_uis")
list_hyper_parameter_tuning_jobs_paginator: sagemaker.ListHyperParameterTuningJobsPaginator = client.get_paginator("list_hyper_parameter_tuning_jobs")
list_labeling_jobs_paginator: sagemaker.ListLabelingJobsPaginator = client.get_paginator("list_labeling_jobs")
list_labeling_jobs_for_workteam_paginator: sagemaker.ListLabelingJobsForWorkteamPaginator = client.get_paginator("list_labeling_jobs_for_workteam")
list_model_packages_paginator: sagemaker.ListModelPackagesPaginator = client.get_paginator("list_model_packages")
list_models_paginator: sagemaker.ListModelsPaginator = client.get_paginator("list_models")
list_monitoring_executions_paginator: sagemaker.ListMonitoringExecutionsPaginator = client.get_paginator("list_monitoring_executions")
list_monitoring_schedules_paginator: sagemaker.ListMonitoringSchedulesPaginator = client.get_paginator("list_monitoring_schedules")
list_notebook_instance_lifecycle_configs_paginator: sagemaker.ListNotebookInstanceLifecycleConfigsPaginator = client.get_paginator("list_notebook_instance_lifecycle_configs")
list_notebook_instances_paginator: sagemaker.ListNotebookInstancesPaginator = client.get_paginator("list_notebook_instances")
list_processing_jobs_paginator: sagemaker.ListProcessingJobsPaginator = client.get_paginator("list_processing_jobs")
list_subscribed_workteams_paginator: sagemaker.ListSubscribedWorkteamsPaginator = client.get_paginator("list_subscribed_workteams")
list_tags_paginator: sagemaker.ListTagsPaginator = client.get_paginator("list_tags")
list_training_jobs_paginator: sagemaker.ListTrainingJobsPaginator = client.get_paginator("list_training_jobs")
list_training_jobs_for_hyper_parameter_tuning_job_paginator: sagemaker.ListTrainingJobsForHyperParameterTuningJobPaginator = client.get_paginator("list_training_jobs_for_hyper_parameter_tuning_job")
list_transform_jobs_paginator: sagemaker.ListTransformJobsPaginator = client.get_paginator("list_transform_jobs")
list_trial_components_paginator: sagemaker.ListTrialComponentsPaginator = client.get_paginator("list_trial_components")
list_trials_paginator: sagemaker.ListTrialsPaginator = client.get_paginator("list_trials")
list_user_profiles_paginator: sagemaker.ListUserProfilesPaginator = client.get_paginator("list_user_profiles")
list_workteams_paginator: sagemaker.ListWorkteamsPaginator = client.get_paginator("list_workteams")
search_paginator: sagemaker.SearchPaginator = client.get_paginator("search")
How it works
Fully automated builder carefully generates
type annotations for each service, patiently waiting for boto3
updates. It delivers
a drop-in type annotations for you and makes sure that:
- All available
boto3
services are covered. - Each public class and method of every
boto3
service gets valid type annotations extracted from the documentation (blamebotocore
docs if types are incorrect). - Type annotations include up-to-date documentation.
- Link to documentation is provided for every method.
- Code is processed by black for readability.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Hashes for mypy-boto3-sagemaker-1.12.18.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | aea834287514ca759f4e883863e88fb69f9d5cf966bf4970cc7249124a52b1a7 |
|
MD5 | 778cf0c13fba03757872abfc0b0b8922 |
|
BLAKE2b-256 | f57b9f67e1dd6bb8fce153677c5aec7adb06128d8f1a508bf596ff3ba0711278 |