Skip to main content

Neural Additive Models (NAM) - Pytorch

Project description

nam-pytorch

Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf]


Installation

You can access nam-pytorch via pip:

$ pip install nam-pytorch

Usage

import torch 
from nam_pytorch import NAM

nam = NAM(
    num_features=784,
    link_func="sigmoid"
)

images = torch.rand(32, 784)
pred = nam(images) # [32, 1]

Contributing

As always, if there are any issues with / suggestions for the code, feel free to raise an issue or submit a PR.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nam_pytorch-0.0.1.tar.gz (2.2 kB view details)

Uploaded Source

Built Distribution

nam_pytorch-0.0.1-py3-none-any.whl (3.5 kB view details)

Uploaded Python 3

File details

Details for the file nam_pytorch-0.0.1.tar.gz.

File metadata

  • Download URL: nam_pytorch-0.0.1.tar.gz
  • Upload date:
  • Size: 2.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.13

File hashes

Hashes for nam_pytorch-0.0.1.tar.gz
Algorithm Hash digest
SHA256 8ea2ccb7c313daa1690fcfb74ef074c321722453028ab51cf6df5ee4664e0090
MD5 4808f8972beeaff9f714ee9cb44b268d
BLAKE2b-256 f0ace727439b3cbb4d911b53385d190a97bf6e93f6ed8ec587ebeea93b70f8f1

See more details on using hashes here.

File details

Details for the file nam_pytorch-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: nam_pytorch-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 3.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.2 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.13

File hashes

Hashes for nam_pytorch-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 bc611b1f785cdd50a5ebc6356e2b9f611514b89618d2684ff00ce2becf3c0574
MD5 8da39e074212bd991cf9283bb8d1ffd5
BLAKE2b-256 84fb5028751f4817e77221d7dd1deb56a09fbf430d36739c526bac0838bd1919

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page