Skip to main content

Python bindings to the nanoarrow C library

Project description

nanoarrow for Python

The nanoarrow Python package provides bindings to the nanoarrow C library. Like the nanoarrow C library, it provides tools to facilitate the use of the Arrow C Data and Arrow C Stream interfaces.

Installation

The nanoarrow Python bindings are available from PyPI and conda-forge:

pip install nanoarrow
conda install nanoarrow -c conda-forge

Development versions (based on the main branch) are also available:

pip install --extra-index-url https://pypi.fury.io/arrow-nightlies/ \
    --prefer-binary --pre nanoarrow

If you can import the namespace, you're good to go!

import nanoarrow as na

Data types, arrays, and array streams

The Arrow C Data and Arrow C Stream interfaces are comprised of three structures: the ArrowSchema which represents a data type of an array, the ArrowArray which represents the values of an array, and an ArrowArrayStream, which represents zero or more ArrowArrays with a common ArrowSchema. These concepts map to the nanoarrow.Schema, nanoarrow.Array, and nanoarrow.ArrayStream in the Python package.

na.int32()
<Schema> int32
na.Array([1, 2, 3], na.int32())
nanoarrow.Array<int32>[3]
1
2
3

The nanoarrow.Array can accommodate arrays with any number of chunks, reflecting the reality that many array containers (e.g., pyarrow.ChunkedArray, polars.Series) support this.

chunked = na.Array.from_chunks([[1, 2, 3], [4, 5, 6]], na.int32())
chunked
nanoarrow.Array<int32>[6]
1
2
3
4
5
6

Whereas chunks of an Array are always fully materialized when the object is constructed, the chunks of an ArrayStream have not necessarily been resolved yet.

stream = na.ArrayStream(chunked)
stream
nanoarrow.ArrayStream<int32>
with stream:
    for chunk in stream:
        print(chunk)
nanoarrow.Array<int32>[3]
1
2
3
nanoarrow.Array<int32>[3]
4
5
6

The nanoarrow.ArrayStream also provides an interface to nanoarrow's Arrow IPC reader:

url = "https://github.com/apache/arrow-experiments/raw/main/data/arrow-commits/arrow-commits.arrows"
na.ArrayStream.from_url(url)
nanoarrow.ArrayStream<non-nullable struct<commit: string, time: timestamp('us', 'UTC'), files: int3...>

These objects implement the Arrow PyCapsule interface for both producing and consuming and are interchangeable with pyarrow objects in many cases:

import pyarrow as pa

pa.field(na.int32())
pyarrow.Field<: int32>
pa.chunked_array(chunked)
<pyarrow.lib.ChunkedArray object at 0x12a49a250>
[
  [
    1,
    2,
    3
  ],
  [
    4,
    5,
    6
  ]
]
pa.array(chunked.chunk(1))
<pyarrow.lib.Int32Array object at 0x11b552500>
[
  4,
  5,
  6
]
na.Array(pa.array([10, 11, 12]))
nanoarrow.Array<int64>[3]
10
11
12
na.Schema(pa.string())
<Schema> string

Low-level C library bindings

The nanoarrow Python package also provides lower level wrappers around Arrow C interface structures. You can create these using nanoarrow.c_schema(), nanoarrow.c_array(), and nanoarrow.c_array_stream().

Schemas

Use nanoarrow.c_schema() to convert an object to an ArrowSchema and wrap it as a Python object. This works for any object implementing the Arrow PyCapsule Interface (e.g., pyarrow.Schema, pyarrow.DataType, and pyarrow.Field).

na.c_schema(pa.decimal128(10, 3))
<nanoarrow.c_schema.CSchema decimal128(10, 3)>
- format: 'd:10,3'
- name: ''
- flags: 2
- metadata: NULL
- dictionary: NULL
- children[0]:

Using c_schema() is a good fit for testing and for ephemeral schema objects that are being passed from one library to another. To extract the fields of a schema in a more convenient form, use Schema():

schema = na.Schema(pa.decimal128(10, 3))
schema.precision, schema.scale
(10, 3)

The CSchema object cleans up after itself: when the object is deleted, the underlying ArrowSchema is released.

Arrays

You can use nanoarrow.c_array() to convert an array-like object to an ArrowArray, wrap it as a Python object, and attach a schema that can be used to interpret its contents. This works for any object implementing the Arrow PyCapsule Interface (e.g., pyarrow.Array, pyarrow.RecordBatch).

na.c_array(["one", "two", "three", None], na.string())
<nanoarrow.c_array.CArray string>
- length: 4
- offset: 0
- null_count: 1
- buffers: (4754305168, 4754307808, 4754310464)
- dictionary: NULL
- children[0]:

Using c_array() is a good fit for testing and for ephemeral array objects that are being passed from one library to another. For a higher level interface, use Array():

array = na.Array(["one", "two", "three", None], na.string())
array.to_pylist()
['one', 'two', 'three', None]
array.buffers
(nanoarrow.c_lib.CBufferView(bool[1 b] 11100000),
 nanoarrow.c_lib.CBufferView(int32[20 b] 0 3 6 11 11),
 nanoarrow.c_lib.CBufferView(string[11 b] b'onetwothree'))

Advanced users can create arrays directly from buffers using c_array_from_buffers():

na.c_array_from_buffers(
    na.string(),
    2,
    [None, na.c_buffer([0, 3, 6], na.int32()), b"abcdef"]
)
<nanoarrow.c_array.CArray string>
- length: 2
- offset: 0
- null_count: 0
- buffers: (0, 5002908320, 4999694624)
- dictionary: NULL
- children[0]:

Array streams

You can use nanoarrow.c_array_stream() to wrap an object representing a sequence of CArrays with a common CSchema to an ArrowArrayStream and wrap it as a Python object. This works for any object implementing the Arrow PyCapsule Interface (e.g., pyarrow.RecordBatchReader, pyarrow.ChunkedArray).

pa_batch = pa.record_batch({"col1": [1, 2, 3]})
reader = pa.RecordBatchReader.from_batches(pa_batch.schema, [pa_batch])
array_stream = na.c_array_stream(reader)
array_stream
<nanoarrow.c_array_stream.CArrayStream>
- get_schema(): struct<col1: int64>

You can pull the next array from the stream using .get_next() or use it like an iterator. The .get_next() method will raise StopIteration when there are no more arrays in the stream.

for array in array_stream:
    print(array)
<nanoarrow.c_array.CArray struct<col1: int64>>
- length: 3
- offset: 0
- null_count: 0
- buffers: (0,)
- dictionary: NULL
- children[1]:
  'col1': <nanoarrow.c_array.CArray int64>
    - length: 3
    - offset: 0
    - null_count: 0
    - buffers: (0, 2642948588352)
    - dictionary: NULL
    - children[0]:

Use ArrayStream() for a higher level interface:

reader = pa.RecordBatchReader.from_batches(pa_batch.schema, [pa_batch])
na.ArrayStream(reader).read_all()
nanoarrow.Array<non-nullable struct<col1: int64>>[3]
{'col1': 1}
{'col1': 2}
{'col1': 3}

Development

Python bindings for nanoarrow are managed with setuptools. This means you can build the project using:

git clone https://github.com/apache/arrow-nanoarrow.git
cd arrow-nanoarrow/python
pip install -e .

Tests use pytest:

# Install dependencies
pip install -e ".[test]"

# Run tests
pytest -vvx

CMake is currently required to ensure that the vendored copy of nanoarrow in the Python package stays in sync with the nanoarrow sources in the working tree.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nanoarrow-0.6.0.tar.gz (425.3 kB view details)

Uploaded Source

Built Distributions

nanoarrow-0.6.0-pp310-pypy310_pp73-win_amd64.whl (628.7 kB view details)

Uploaded PyPy Windows x86-64

nanoarrow-0.6.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (881.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nanoarrow-0.6.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (850.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

nanoarrow-0.6.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (975.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.6.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (719.7 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

nanoarrow-0.6.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (764.5 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

nanoarrow-0.6.0-pp39-pypy39_pp73-win_amd64.whl (627.9 kB view details)

Uploaded PyPy Windows x86-64

nanoarrow-0.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (880.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nanoarrow-0.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (848.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

nanoarrow-0.6.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (974.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.6.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (718.6 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

nanoarrow-0.6.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (763.3 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

nanoarrow-0.6.0-pp38-pypy38_pp73-win_amd64.whl (626.7 kB view details)

Uploaded PyPy Windows x86-64

nanoarrow-0.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (889.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

nanoarrow-0.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (857.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

nanoarrow-0.6.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (983.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.6.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl (715.6 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

nanoarrow-0.6.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (758.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

nanoarrow-0.6.0-cp313-cp313-win_amd64.whl (671.9 kB view details)

Uploaded CPython 3.13 Windows x86-64

nanoarrow-0.6.0-cp313-cp313-win32.whl (616.7 kB view details)

Uploaded CPython 3.13 Windows x86

nanoarrow-0.6.0-cp313-cp313-musllinux_1_2_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

nanoarrow-0.6.0-cp313-cp313-musllinux_1_2_i686.whl (4.4 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

nanoarrow-0.6.0-cp313-cp313-musllinux_1_2_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

nanoarrow-0.6.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

nanoarrow-0.6.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

nanoarrow-0.6.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.6.0-cp313-cp313-macosx_11_0_arm64.whl (833.8 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

nanoarrow-0.6.0-cp313-cp313-macosx_10_13_x86_64.whl (884.1 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

nanoarrow-0.6.0-cp312-cp312-win_amd64.whl (675.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

nanoarrow-0.6.0-cp312-cp312-win32.whl (618.8 kB view details)

Uploaded CPython 3.12 Windows x86

nanoarrow-0.6.0-cp312-cp312-musllinux_1_2_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

nanoarrow-0.6.0-cp312-cp312-musllinux_1_2_i686.whl (4.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

nanoarrow-0.6.0-cp312-cp312-musllinux_1_2_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

nanoarrow-0.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nanoarrow-0.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

nanoarrow-0.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.6.0-cp312-cp312-macosx_11_0_arm64.whl (841.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

nanoarrow-0.6.0-cp312-cp312-macosx_10_13_x86_64.whl (892.3 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

nanoarrow-0.6.0-cp311-cp311-win_amd64.whl (675.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

nanoarrow-0.6.0-cp311-cp311-win32.whl (616.5 kB view details)

Uploaded CPython 3.11 Windows x86

nanoarrow-0.6.0-cp311-cp311-musllinux_1_2_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

nanoarrow-0.6.0-cp311-cp311-musllinux_1_2_i686.whl (4.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

nanoarrow-0.6.0-cp311-cp311-musllinux_1_2_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

nanoarrow-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nanoarrow-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

nanoarrow-0.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.6.0-cp311-cp311-macosx_11_0_arm64.whl (839.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

nanoarrow-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl (887.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

nanoarrow-0.6.0-cp310-cp310-win_amd64.whl (674.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

nanoarrow-0.6.0-cp310-cp310-win32.whl (618.1 kB view details)

Uploaded CPython 3.10 Windows x86

nanoarrow-0.6.0-cp310-cp310-musllinux_1_2_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

nanoarrow-0.6.0-cp310-cp310-musllinux_1_2_i686.whl (4.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

nanoarrow-0.6.0-cp310-cp310-musllinux_1_2_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

nanoarrow-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nanoarrow-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

nanoarrow-0.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.6.0-cp310-cp310-macosx_11_0_arm64.whl (836.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

nanoarrow-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl (883.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

nanoarrow-0.6.0-cp39-cp39-win_amd64.whl (677.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

nanoarrow-0.6.0-cp39-cp39-win32.whl (620.6 kB view details)

Uploaded CPython 3.9 Windows x86

nanoarrow-0.6.0-cp39-cp39-musllinux_1_2_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

nanoarrow-0.6.0-cp39-cp39-musllinux_1_2_i686.whl (4.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

nanoarrow-0.6.0-cp39-cp39-musllinux_1_2_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

nanoarrow-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nanoarrow-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

nanoarrow-0.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.6.0-cp39-cp39-macosx_11_0_arm64.whl (840.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

nanoarrow-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl (887.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nanoarrow-0.6.0-cp38-cp38-win_amd64.whl (679.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

nanoarrow-0.6.0-cp38-cp38-win32.whl (621.3 kB view details)

Uploaded CPython 3.8 Windows x86

nanoarrow-0.6.0-cp38-cp38-musllinux_1_2_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

nanoarrow-0.6.0-cp38-cp38-musllinux_1_2_i686.whl (4.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

nanoarrow-0.6.0-cp38-cp38-musllinux_1_2_aarch64.whl (4.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

nanoarrow-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nanoarrow-0.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

nanoarrow-0.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

nanoarrow-0.6.0-cp38-cp38-macosx_11_0_arm64.whl (842.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

nanoarrow-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl (888.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file nanoarrow-0.6.0.tar.gz.

File metadata

  • Download URL: nanoarrow-0.6.0.tar.gz
  • Upload date:
  • Size: 425.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for nanoarrow-0.6.0.tar.gz
Algorithm Hash digest
SHA256 5d6b6e5609671c42e9ec85b195664f8bb6d721dd3a3de56fcbd8b9ed62e38af8
MD5 880c417cc0d0a2358bdc992231898e0e
BLAKE2b-256 137a93166ba473081cff965d21f403076d6bb0ebd4f0557ef3167675f72f570d

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f7288c30b84a5cc7e63226e77637e43a7e8bac7ca4c02802f7a7ea14e007fed9
MD5 3d3cc951b5644e2002c021c8cd1f5ae2
BLAKE2b-256 ef493c760aceccadad2f5998a546ea136328f5e8d50df920a2ab33d2ae5c9f1b

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89269ec226b442d6ae08a453bfe9b5850c39ab05632e7afb4f4fe0a38f9bfb35
MD5 39716bf6211a0cbb6df30711d487b660
BLAKE2b-256 c8fe8753576350ea09b8f548a5d2946140d414edbfa70517d28d12893ef2d9b6

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd30bc1a48b67b86c9f1d9af7d634524729f0367b35e76626eeaafb93f8d4114
MD5 9c1cb9a5d45751550dfcf6a9a88f7437
BLAKE2b-256 88025a61ed3471a2b2d4cc2a1b5e672decf18a0bbef666d62ebcdb47b59c55c9

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d49469c9b769740cebe6be9cc5a82ed77ab728a84d9a52eb24730b8d653acc89
MD5 0c11bce1f3909572c3b7b892ee5e1009
BLAKE2b-256 fea64697cce9408a40c05cb5fb12a1b8efaaf51da73c0caac1b6d58c972057e6

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6ba716eddace8cb032578527752c20fe89796929e184e4e1a8d070a66e0ae3b9
MD5 93a7948bfd78477c2cd14cc0ed49e5e4
BLAKE2b-256 58d8cb35d5258cb5a05d6d9761a554634ac051c45a2bc0d9485d21a4c9cfc70b

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 582581e0eb6ab7f0c5bbf1ac120516605c2fd2e2c66ae7330fd962986515b078
MD5 ff17483bf26ad223d3a5824c7ad0f348
BLAKE2b-256 3b44589c9c8dee8179d932383eaeca20957639e487dcd6528690ace522f39862

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d0d5a436b581a71ac19b11467113f3fc5e2586398789586844be27ba1eb42895
MD5 0f7af4bab81a20e1dbef30de090e1ef3
BLAKE2b-256 d2e680960cd7e7bb3f00ff17a241b65d9802695238396d446affd65e9b3bedc9

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7325cb69ec9523f62dd6a9ed9c8b1f77233053fa661b5e04522a11b5d2a84ff
MD5 a432b958d061e4b53d405735c59c40ec
BLAKE2b-256 e39e03aa392b83efadab59a08e8d0f8e0e1a7c654b79d454a82e9c9f70772ef1

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e7b870546ffc24f057574adfa9f6d6bf0bd67437b40d0f05c793501cd897d812
MD5 14a904c6cdd8cf1a632f17f90ab0bee5
BLAKE2b-256 f270f1398913496fda2cbf41ec7ea52a449cc2fd40e84270e9926e8134d330b6

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 353a76e11134ccc967dae947d829b6101b817143b13122ade5cacb43c02f54ea
MD5 ce629d24611f77fce812ad09a6c9d53c
BLAKE2b-256 27f437ce99f3fecd1753c958a5c53c5b27adc904c473a19169ddaa0b092cba68

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a296bef200ce065b0bbe45cbc1e21862be22654d25e9efca3b771d92fdcb2886
MD5 b81c70ce7aafb9664b4010b9d5f9bddf
BLAKE2b-256 7cfc8a98667ef56894a2221ab7c420e986475bcae754660e38a561cc7edcd5c6

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 9b5c8c3050d6f47752ce1608455c4109261a3458a51b2d811a36c7a5c2f2a161
MD5 6bb844954f7084d970bc2c2ecb4ec248
BLAKE2b-256 58fe9a8dc6d73ee1174637eae269003618e4256e0fea5289138e4e33267ad076

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3371d1a5cb248278eb66e28b8b2d26e5b59ba408bc9b3c5c0582fe9eeaf354aa
MD5 1ae11b2ba019b412e3075a0bd7ec4ef6
BLAKE2b-256 d94c9126be31b96cb982d8f5f3995ac3dcf8c4fd56eb45d51723a5e88035007c

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f74f5f631df53aa92bcfe3b5a2a08cea39df425c5fe68bef98489b1db679886
MD5 273d62b9292c439438d329d5bc4d0f71
BLAKE2b-256 f203d66d845a03055de0675c550eb442dd6d9258f4e85ab9b86215fb9da660eb

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3bc4ae0d4c33337fd312ff83f756525f3cbb8ed71758cebc7c05336c3e881273
MD5 c7cb7493d04fd756ca7bf928650da762
BLAKE2b-256 daab38b3b6f5fedcd39bea29ffee5d2d477db983325644f219f1f5a9350b2b7d

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8cfb0b9fac62f80a5bd04b26d98f10314acf0e5187adb4a5cc5e2b22e1d58d31
MD5 9c5e9a78c6ed6a50969b7befe5a750aa
BLAKE2b-256 05f763b3e3e68ef9109d6f41f3aaf4315d09fbb41cce8d37277c9fc0a9f851ca

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 319e9321684a95e9478f85561918d98424603ace7f48f671d946c979d8c3a88a
MD5 f75fccc88d3ac39389667b3eaee5ae57
BLAKE2b-256 1250af8ffe575602e902ea21bc94d9b0168637b0518dc5edb87e8c0bea1c40c3

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 86b0c3ff73d14238e2778d2b0c58a0a7620564955cc08982c15258d857308680
MD5 48f68750b67636dbb45a67379ab405d5
BLAKE2b-256 03f30db1ced32e3cedc08dee027d4442897768c323d842e7c1d62e70718f3b7f

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 c40deb44cc1565adfc6e8845612d5f52b49f13b9b4af1e1b7ffb23991494b15a
MD5 e4612e238baab69572b461319a590ac8
BLAKE2b-256 10f4fb45ad724dbd4269e996d2e059ea6fd7ca8acbea0492c12b01a38110880a

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: nanoarrow-0.6.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 616.7 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for nanoarrow-0.6.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 4cb7ca2e38b8cd492c371ed3468ae4c63b4935f9a4522aca3353d2b18b682058
MD5 f40f35786ced0753cfa8715c447a2808
BLAKE2b-256 64b0b426b79cdc5e0b508439065067c9f09ec61f5b580fd441c4caa46ac319c0

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c6baf9bd6d6bfa8b5bcb4ef44ab4f9431d85447d22a3ad4854542bd04fbf4ecd
MD5 75e4634fac90001c95cb21a1bb930a5b
BLAKE2b-256 b320123e513a428a43a872192b2158d1f5f6f840c3ec1cc7004c56807bbdb374

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f07bde579be7233adc50e7197f2aed20293d8eaf24d7cabaa94ad7668b5fd35e
MD5 7b5d0b38ffd0427fab2ada3076b2f714
BLAKE2b-256 ef0d73312a01a9f3e55fa63ec3f39539c63416665a1fc93d2ad5a0c735bd7c97

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f5c982d9d2a6a156ba904bc1d8c543f14081f6c056c2680e53940028305e6632
MD5 9c085e5ba295eaade2776c1896809e90
BLAKE2b-256 63d92291c214a754c3e13eb22cb78294e7a053dd07608fcdf68ac38720865d5a

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3238352985a904dc54ac085b5a8c08804e892526ee117992c9f4caa253276b2
MD5 ab0aaa9c489e8f8e916d50d510afe8c8
BLAKE2b-256 ca83aa27720f65445a4a887b879d7f152005f40701101f5e5c3fbc46bb87d718

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ecf18c7147a48c956c174a31ddeb2aef06adfc67694298269f6d8bf23ee64ccd
MD5 94e59e55a46015ba4d2979e607b8948d
BLAKE2b-256 0450b4c78f1e0b4c0c046ab020d1a93440a75e8bba0c70eefafcf06efceaae0c

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5673739e4dccf372efccbcd5ef333aa78f08eb9f6c64efe024287bc512627f0b
MD5 ee76cb7df08a9b0ffd8ddf2cd286c6f4
BLAKE2b-256 7227ce80f829935050a1f44efbfa8c1993b389410ce30eb42313e8e2ca32ccf0

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5bf538e48425d399f9fe1c99c2fb38317ebc9b1e14e52b6d612e45f4acc05675
MD5 6c4c1f8392268129620816e39e17bc2d
BLAKE2b-256 2cdd1ca3bb537848cf2689769f7854a4f21955a41f542ef9c4953f9970ceb4b9

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0bc71ce781d6edb2b1bc64fbe0a13916f887ce597657b9164a52c90fa7614a70
MD5 6e3f8a7f34bad5f040705fbdd63ec3f1
BLAKE2b-256 8f9f8dfdd53a2387c9c05a1a5b0470594249ee1bdba7f8b328faf29ac860a234

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 69dfa1bee5bab02214f09d519d93192f3c5090715f302b968d031ef480cafaf0
MD5 c0e0e26fce8abdea1f258b4b0676cb20
BLAKE2b-256 636542f505015d5d4cbe31a93c0c9faed81c44683700e09439c3ccf62193fe60

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: nanoarrow-0.6.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 618.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for nanoarrow-0.6.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 da8cf60025f5ca0b3ab1288ec237c97147d89e106b063e1ba4a70e07c0bb4fde
MD5 383f504a0df4745ec319e81edb3081e6
BLAKE2b-256 ce577d124ebf6805a93c97239580b714aae57a3a9b04afe7f133aec630f95ba9

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 aabd038252cccc409d75b849f4087a3e2b6927f3d90c27c7abfd75dbe5a550be
MD5 22a7868bd12317d17ef2163b205fc95d
BLAKE2b-256 bd9dd8c0277c462821b06de768fb2b1cfa49596aeb4ccb35b9dddfe68a3e5921

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b74dd08b320e345289e2221742350163ff3ce221f3a7f8c58ee2724a1946f11f
MD5 03200cf67111e80ff420f20c154a73e0
BLAKE2b-256 364635eb15ea58e1aa9df0a761e7c8a84a3e443102b1caa6ddeaa15f5f510763

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 312abddf02bda40ccbd3080142fd17c8f7041c43d6714e3941b4e656dbd17ed2
MD5 68f1ecf4b8c968d58800bdcd9dd563d3
BLAKE2b-256 3dbe93325947fc0845f2222bcb2adbd926218a18da0fb6dfdba3e4aecfba7283

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88ffc793682659f606399cb3f3b3c47e6b2ebca19406c89d0d11860da540bcd6
MD5 dfa6cc8c37c1a49bd0e1a27c8fff95c7
BLAKE2b-256 6f46b00853ecd3f0195e10e098cd5fcc1adab789ba5526b85430ccd2c8a1fb5e

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a351dd39d91e09b817a388463ace0979511ef483d02ab343b9e096a9c5fb11b
MD5 dbad0380a1dbbd6dc2bd9730b2c34e1d
BLAKE2b-256 ee803d275fab55bccb393aeb1366995a752a9946504222df1777e73b60d301c5

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 363c8fa2e46b61a0bc76400701fc51f26c09f5ad0de33ed671b7aebb5c128c26
MD5 f44f9159000f2c7206427d2cf1088f1f
BLAKE2b-256 8d5a67ff169af613b49993dcc102c6d52320cf4ec29944e92920afb97bdf80c1

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2049792c4f59b1e94a9e38575596b4966a8da2d7d2c6c117b1ed19e7371e6947
MD5 431ab585b454aee8ee4bf1b9ea335fbc
BLAKE2b-256 279a4ca08e983928cc0afa6fd0e19bbe47c15b6929351367628deb1253e555a1

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c73b53320b99f3f86e69b4435507b8558e67db77be90dc1dd0a2269081b7f032
MD5 04d22dedb830c3183ec9ae34348e61f6
BLAKE2b-256 cc3bff354be08af945f9de7e9cfd1f5173ea8caa8cea627473b5b3743c0b676c

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2457901d156ac868c39697acd45f21bbd0fc61d8300ead2f5134315bef3b05e7
MD5 752468332821fb561c4632e9815d9371
BLAKE2b-256 7d1342188902c48a95624159eb8671a7ee61ea87188369b8182789de098d6a81

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: nanoarrow-0.6.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 616.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for nanoarrow-0.6.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 322f370d2e72a66f94e7f51335629702add58f533545954acc8e7b0a93978d83
MD5 2ca18a628137ad8b33871bb3dc30d6cc
BLAKE2b-256 61d5baff6a79bcf319214f2d19e07bde6bed9351f8d7f1b57e110c6c7b8fb127

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a1065baecc9ea2e7d2f1fa87be37c9076de1020270314b72b8de3001734ad668
MD5 da92fdbcbc36cbf739278d10f427eb7b
BLAKE2b-256 4129949edb0000b5cc9a1f0ac001ddfeb312273efc66b98036f9deb2fbeb4568

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7a02fc8e9422ab74325cccfa4780ca5dd422e8ecac275c1197c1839aec13fef1
MD5 cc3bd02d357dc791e60495546668f35a
BLAKE2b-256 97dd991a858c449f12790f98f9064bf7e3f12a7016c65b5f0e84776c6d7a7f43

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 6b22f59041ff4e8883bc0a3f424badd3853b40bdcdded362955e35db39450d21
MD5 ef0bf45cd5d28eae2f33337007f53eaf
BLAKE2b-256 004b2a5872fde1ce4adbc9e36faffa65242964373915f0ef5a86096565c1bee2

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 21cc6bd59fe84e796217e4befe869ec7bd149a8dd328534d33654401f6211a19
MD5 c4021cf45af285c9dfec38274b7071fc
BLAKE2b-256 f027fc6378946679c0dd25ee0c43904e418f57ae3a53544b62c700b0b79d2d96

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8a6160d486c7a89a1bb758144764c7ddef59e4c1c3a13e6f76018ec73449d1d3
MD5 91e5609f454517f6e7a3c4180ac5c3e8
BLAKE2b-256 a141526414bee75d0dc58d7be7cf04728c048b21f76720960556b922fcb6cf07

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 893a3345bcd6d1ee5f42f69caeedd3b816fbf4ea452693e5cdc6d474cb0272d1
MD5 144025559fa99523a381f1d7d914c38b
BLAKE2b-256 6bbe3955f21b9230f96fd94dcba64c81ebc054d94ccadb996c071276aa005709

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 576f90498e0522f94000db741af90b05946dd529f477ae9968aa698bfe17391b
MD5 c2c80264707c4bc1220753e590bc823e
BLAKE2b-256 87276f9130841c1eb7197749b85e8f2b0803562f413d2fafa011865e179415d9

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f8c0a3468a1b0425a7bf9ba1d9eb5d0761ebab177af98ad5e5f97a09688c7e1
MD5 775e8a318605f3bce38fdad9dbea9630
BLAKE2b-256 5ed4f7e52c8657520c99830c06fd177f044128f6e4f2fb20fb30009aecaa6726

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2f752a5522e4df7cbc5ff11e6f227ac92903344fac559171bfdb1d42e29a6cbe
MD5 1e227d952bfd06c90dd60bb376542d9f
BLAKE2b-256 9e1e747ee0c001bae3c024ec4ad6867cb1f3e71197360fb3d5cd93ff6c39c471

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: nanoarrow-0.6.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 618.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for nanoarrow-0.6.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f8eee185fc2c879948fec5ba9591fbc761df4c8f2b175b8d5df724c663aecb81
MD5 16da5723886b99bf11102f4d513bd976
BLAKE2b-256 5239e33a6e7f9637ca333a5287cba81f60ffdb3c705cc0c26a3d8bbc339b56b7

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f6408b1a9c332725d5d3c42433bae8ae6c7b6976782cb74c121fa04a2db02398
MD5 9327afafb2c028d19bcbf0bb036e57e2
BLAKE2b-256 0e153b7c8ac7c0fd320f64833a5475f2db03ccf28f9473add46b00ce80b18102

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 dfa4c606bda4e8ab7399ae4d7195c8e5862615611054a64d68f20f35f878c36e
MD5 2755f2b35278b9a291e9273b086cc6e8
BLAKE2b-256 c6d88362b4af690c094fbc91c70669aa2e3dcaf2de68d232672e838db8a16dee

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1296b35c40da8832f543480263a1edc2fb17bc36d46a7a168a9254b2044558fa
MD5 04f03566298a0cc90c55a60df9398c1a
BLAKE2b-256 8eccf19288b881b16c275adfbb69afe163c550c9b83120d16f758a8cf175f5d0

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 509d3652d8c34764b8146c6f45c77bb0110bcc08a68cc5fac4b3711749e2efce
MD5 e6fdc16983774774d56bcb99f8218c1a
BLAKE2b-256 0653df2ca92c5f8511a0da332f7fb344f559fcfe937f69f9f906f318257cbe9b

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 10d44947ea84ba19b1ee710bbf1402758b40aaf8b1c0b34ff917c691d67389cc
MD5 3dc118bfd3bf28e8d1e770bf9af6a169
BLAKE2b-256 a70f8d7fb878a8cbacdc06de653b43cd9bf3cf199415cfbb2f3ba157aa42bc69

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ad5591b0b90a5d0dd47998a7a160d154fa2d8cef1c6b9616dcf89a27f82e613e
MD5 fe0f6e45f00166b40128bafd192860c6
BLAKE2b-256 4dbf06e7912feb55b3e63ff83f85e3a18909613ebecf718af7ca4a4839ee2c93

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 99c732c3e19fad47fda6d270cc8b6157db081ac6e88aa63187959074bbbefc9f
MD5 c05a40213ff12e1a79b0dcf969b0e26c
BLAKE2b-256 721b8149eecd2203244a6cd8de28213e0f20ce7b12f09cfb1a99b396c2398b93

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b5ed40a3685f6b5722fad5679c7d9a6204888522edd4524c45c8b3b9a9fe3950
MD5 b3ca95bdc9006685872663ef491ad259
BLAKE2b-256 0a5839a9b17df278ad490671f704bec62bb465902ce14ca8cef2172995d6a743

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: nanoarrow-0.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 677.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for nanoarrow-0.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a402c0c31f3d5434d9f38a6d5361bcef528263c82f709583d2eb9fa56b27d6f2
MD5 fa04ca3b33de60d3f2f114d2cb961e65
BLAKE2b-256 964231c8b333876b1e8d612fbd2f388ed2595a64fdc1cb66d79e31d5911524cd

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: nanoarrow-0.6.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 620.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for nanoarrow-0.6.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 384b1486d421fbd7b215f9cf2508e21332f03d6e52d8a51ce9591ebb02a83f66
MD5 aeebb459f11bd414eac4ff57f9783cf9
BLAKE2b-256 999f380e7632e1b3145f521f428e69d701ec529cde41d9abd271d0b3b1dd555e

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6cfff2b94c4f0e1dd454d0d7762e0649bd34d4b0d525a368216c6a7a20ed3b85
MD5 76832c5aefd84a59f8f69a633d12f76e
BLAKE2b-256 1cbf434e96575773ff1949b27f91c28ed3aa9a7e422546bc5ed01ed9e9920cd3

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1b5126fb1a46a09fb35243e6c4600ab1d58725355899d33a1a96608822d4a93f
MD5 fe897f94274b27956327556758cde328
BLAKE2b-256 905f0a4ec5062f9eebd82cf4427567b234a4a453d7de8da6703645396693048d

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 274fc3f591847cddd26c0deb77ae234a49cec2242088e46443a6ab3494398550
MD5 1f68d53268171b27151aca1c5bfff5c8
BLAKE2b-256 d270893f02115edb032c132379d3a56929f1b0417d99ce444153816acdad1e6a

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e284839c20d31824ef827233281e80151c86ed1e1e7f1f40cf91eb528e6d7f8
MD5 bb434690f615c728f172f65be79ca4ed
BLAKE2b-256 7a5dd1623060a7a151ca147f35eb3424d00eb9b2fa7115b1db9e77a29b98f603

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1c710d2187a0b5a8016aedb13ae637f4b913290eba41052463daec84507b0077
MD5 80199f19e461bcd6154dac523fcc6df1
BLAKE2b-256 8ea3c2483346d7da426d5b6a336b0de335ac7ce34d2563e68d45e210ce1bec3e

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 39bd41c90574141a160166f629828efa71c9a695dde47948beb1758fcb0ca3eb
MD5 60b59648b64e53856f62dd93180b939f
BLAKE2b-256 f7f9e6f7561b9718a04ccd9aa23234c4e3d2000755bed7b03993e498c7d781b6

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8bc9abb6ebcd7807de5db4013fcdb4d88c7ab2442113d1cf0286a99128a4d244
MD5 7a4ce182771862514f51bb6a4efc2287
BLAKE2b-256 5f4e2b9031d92310b4a9b0fd9abad3312271b5484a003d398c6808a05a354e9a

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6b3f8300dd50fc6a60b629356f278d176d7f8bcdff7f0ab607d940462d226fdd
MD5 149c32c039638a737529d06448505e1e
BLAKE2b-256 4f3901d979fb58684cb3c7c429af7be49eb2ae3fa90f776fa33356fcbb68901c

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: nanoarrow-0.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 679.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for nanoarrow-0.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c4b9a982d07134921c576f0b4892d4fe773510ea1109882d8140cd7eca9da42c
MD5 e58d01cfc6c9f908c286e74376522560
BLAKE2b-256 c241df8abb466786de0e4435bc8c414b2a2895046a445742ddb6c9e8d681f8b1

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: nanoarrow-0.6.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 621.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for nanoarrow-0.6.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 65497c5d2269d60641fa65266dfb112b86f57e4f8be920a9f7332313bec22558
MD5 77aad0bee45c22ef659c5a300fa9a04e
BLAKE2b-256 09f17aa82e18478b3ee1f8384164bb3a32b137b228dbce0683b06a219cf37eaf

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 01aa7f0b0b5286804037ba1f3c313ddcbc94f28fb4bbafdca71ffa1c3e4e33a2
MD5 1f0d849aefbbd437062d50abd1143c3f
BLAKE2b-256 b8d34069a5f9a01cf76bd41926a2a55dc9f168f661f3a5012b4669912db2fdf7

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b4bd399f6a7b51b17ba5bbda68e0001259990c1944f5d76b436f5807442adead
MD5 6ad9acdf670c325b2868d6e881f12cec
BLAKE2b-256 72658058051efbea85125baf37a8e023ab7d767c6adaadad4b2ee6e0870613dd

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e0f6caa62d69a28fc119819912a6d65477e05a15fe0553405fa9a5b994201701
MD5 05fb3402dba4efb4df4094d96fc4bb87
BLAKE2b-256 aa7fd3b41ac4de7fca64f6f3cf34050f1e0df44e200fc1288350b972b6b218cb

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8061c75053fb113d392d32716f5394ad215fcebcad940b6f344be6f7430c1b3
MD5 2018b2d7c041eba4d54b1f78b656c85f
BLAKE2b-256 bb31b4214052bbfbf14b86975b51fa0d27f399a5374c5b3176307060e81fd91c

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00b50dc8cf2a655855d34f4f8533387dba68ad6d15544a3d750069bcb448848e
MD5 04c8bfd0e823791d124fa9930794f383
BLAKE2b-256 aa793f105fa7755455e5008a847dbafba36220aa7b3feb0fe442545db473e0d5

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b3728dba203952049c968af9dd4759eb57a5a5b6d3f6b3fd1996d3107e0d08f4
MD5 8e13710e5c7f8001cb48c8b6967f76fa
BLAKE2b-256 eb3ed2185ca808df8ac79b319edcb0f1e4642924640480fdad2af90c0ff70ea8

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f3e1c1b06db4235ef833e10523d80ebe21ae2ec6ca4dcdedbec1410b8fef1daa
MD5 9f84db583aaf142fbe491acb82cf7b0b
BLAKE2b-256 677042caaa6a82daad0cf96801b18a18b6a7b252983a4588f9ee1fbdbfb5e3c2

See more details on using hashes here.

File details

Details for the file nanoarrow-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for nanoarrow-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 abd513da6c6dc9a12091fca09e94e5c09545936891e3f05bb417e2c065486acf
MD5 58e4bd723329fc5fa72419cc8b2ec739
BLAKE2b-256 894012f9224c009956b1ba96e1740298470008ccf75e77e7e0aae74f0fa57be6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page